Reputation: 10051
I have a example excel file data1.xlsx
from here, which has a Sheet1
as follows:
Now I want to read it with openpyxl
or pandas
, then convert them into new df1
and df2
, I will finally save them as price
and quantity
sheet:
price sheet:
and quantity sheet
Code I have used:
df = pd.read_excel('./data1.xlsx', sheet_name = 'Sheet1')
df_list = np.split(df, df[df.isnull().all(1)].index)
for df in df_list:
print(df, '\n')
Out:
bj Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4
0 year 2018.0 2019.0 2020.0 sum
1 price 12.0 4.0 5.0 21
2 quantity 5.0 5.0 3.0 13
bj Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4
3 NaN NaN NaN NaN NaN
4 sh NaN NaN NaN NaN
5 year 2018.0 2019.0 2020.0 sum
6 price 5.0 6.0 7.0 18
7 quantity 7.0 5.0 4.0 16
bj Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4
8 NaN NaN NaN NaN NaN
bj Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4
9 NaN NaN NaN NaN NaN
10 gz NaN NaN NaN NaN
11 year 2018.0 2019.0 2020.0 sum
12 price 2.0 3.0 1.0 6
13 quantity 6.0 9.0 3.0 18
bj Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4
14 NaN NaN NaN NaN NaN
bj Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4
15 NaN NaN NaN NaN NaN
16 sz NaN NaN NaN NaN
17 year 2018.0 2019.0 2020.0 sum
18 price 8.0 2.0 3.0 13
19 quantity 5.0 4.0 3.0 12
How could I do that in Python? Thanks a lot.
Upvotes: 3
Views: 183
Reputation: 863166
Use:
#add header=None for default columns names
df = pd.read_excel('./data1.xlsx', sheet_name = 'Sheet1', header=None)
#convert columns by second row
df.columns = df.iloc[1].rename(None)
#create new column `city` by forward filling non missing values by second column
df.insert(0, 'city', df.iloc[:, 0].mask(df.iloc[:, 1].notna()).ffill())
#convert floats to integers
df.columns = [int(x) if isinstance(x, float) else x for x in df.columns]
#convert column year to index
df = df.set_index('year')
print (df)
city 2018 2019 2020 sum
year
bj bj NaN NaN NaN NaN
year bj 2018.0 2019.0 2020.0 sum
price bj 12.0 4.0 5.0 21
quantity bj 5.0 5.0 3.0 13
NaN bj NaN NaN NaN NaN
sh sh NaN NaN NaN NaN
year sh 2018.0 2019.0 2020.0 sum
price sh 5.0 6.0 7.0 18
quantity sh 7.0 5.0 4.0 16
NaN sh NaN NaN NaN NaN
NaN sh NaN NaN NaN NaN
gz gz NaN NaN NaN NaN
year gz 2018.0 2019.0 2020.0 sum
price gz 2.0 3.0 1.0 6
quantity gz 6.0 9.0 3.0 18
NaN gz NaN NaN NaN NaN
NaN gz NaN NaN NaN NaN
sz sz NaN NaN NaN NaN
year sz 2018.0 2019.0 2020.0 sum
price sz 8.0 2.0 3.0 13
quantity sz 5.0 4.0 3.0 12
df1 = df.loc['price'].reset_index(drop=True)
print (df1)
city 2018 2019 2020 sum
0 bj 12.0 4.0 5.0 21
1 sh 5.0 6.0 7.0 18
2 gz 2.0 3.0 1.0 6
3 sz 8.0 2.0 3.0 13
df2 = df.loc['quantity'].reset_index(drop=True)
print (df2)
city 2018 2019 2020 sum
0 bj 5.0 5.0 3.0 13
1 sh 7.0 5.0 4.0 16
2 gz 6.0 9.0 3.0 18
3 sz 5.0 4.0 3.0 12
Last write DataFrame
s to existing file is possible by mode='a'
parameter, link:
with pd.ExcelWriter('data1.xlsx', mode='a') as writer:
df1.to_excel(writer, sheet_name='price')
df2.to_excel(writer, sheet_name='quantity')
Upvotes: 4