Reputation: 529
So. First of all, I am new to Neural Network (NN). As part of my PhD, I am trying to solve some problem through NN. For this, I have created a program that creates some data set made of a collection of input vectors (each with 63 elements) and its corresponding output vectors (each with 6 elements).
So, my program looks like this:
Nₜᵣ = 25; # number of inputs in the data set
xtrain, ytrain = dataset_generator(Nₜᵣ); # generates In/Out vectors: xtrain/ytrain
datatrain = zip(xtrain,ytrain); # ensamble my data
Now, both xtrain
and ytrain
are of type Array{Array{Float64,1},1}
, meaning that
if (say)Nₜᵣ = 2
, they look like:
julia> xtrain #same for ytrain
2-element Array{Array{Float64,1},1}:
[1.0, -0.062, -0.015, -1.0, 0.076, 0.19, -0.74, 0.057, 0.275, ....]
[0.39, -1.0, 0.12, -0.048, 0.476, 0.05, -0.086, 0.85, 0.292, ....]
The first 3 elements of each vector is normalized to unity (represents x,y,z coordinates), and the following 60 numbers are also normalized to unity and corresponds to some measurable attributes.
The program continues like:
layer1 = Dense(length(xtrain[1]),46,tanh); # setting 6 layers
layer2 = Dense(46,36,tanh) ;
layer3 = Dense(36,26,tanh) ;
layer4 = Dense(26,16,tanh) ;
layer5 = Dense(16,6,tanh) ;
layer6 = Dense(6,length(ytrain[1])) ;
m = Chain(layer1,layer2,layer3,layer4,layer5,layer6); # composing the layers
squaredCost(ym,y) = (1/2)*norm(y - ym).^2;
loss(x,y) = squaredCost(m(x),y); # define loss function
ps = Flux.params(m); # initializing mod.param.
opt = ADAM(0.01, (0.9, 0.8)); #
and finally:
trainmode!(m,true)
itermax = 700; # set max number of iterations
losses = [];
for iter in 1:itermax
Flux.train!(loss,ps,datatrain,opt);
push!(losses, sum(loss.(xtrain,ytrain)));
end
It runs perfectly, however, it comes to my attention that as I train my model with an increasing data set(Nₜᵣ = 10,15,25
, etc...), the loss function seams to increase. See the image below:
Where: y1: Nₜᵣ=10, y2: Nₜᵣ=15, y3: Nₜᵣ=25. So, my main question:
Remarks: Note that
Considerations: I need a training data set of near 10000 input vectors, and so I am expecting an even worse scenario...
Some personal thoughts:
Upvotes: 2
Views: 353
Reputation: 19142
loss(x,y) = squaredCost(m(x),y); # define loss function
Your losses aren't normalized, so adding more data can only increase this cost function. However, the cost per data doesn't seem to be increasing. To get rid of this effect, you might want to use a normalized cost function by doing something like using the mean squared cost.
Upvotes: 2