Reputation: 199
I'm trying to determine the position of puzzle piece on a puzzle image. I have
Firstly i extract the contour on image 1. and use it to draw my final template. Then i match the final template to the puzzleboard and save some result images.
Here are some examples of the results i'm getting https://i.sstatic.net/zQxnp.jpg
On some of the images, there's clearly a lot of mismatches and for some of the images, increasing the threshold will hide the correct match and some mismatches will remain.
Any tips or thoughts on optimization would be greatly appreciated!
This is my full code:
full_image = cv2.imread('puzzle_1.jpg')
piece = cv2.imread('piece_1.png', cv2.IMREAD_UNCHANGED)
partial_image = cv2.cvtColor(piece,cv2.COLOR_BGR2GRAY)
contours, hierarchy = cv2.findContours(partial_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
template = np.zeros((55, 55, 4), dtype=np.uint8)
cv2.drawContours(template, contours, -1, (255, 255, 255, 255),1)
hh, ww = template.shape[:2]
puzzleP = template[:,:,0:3]
alpha = template[:,:,3]
alpha = cv2.merge([alpha,alpha,alpha])
correlation = cv2.matchTemplate(full_image, puzzleP, cv2.TM_CCORR_NORMED, mask=alpha)
threshhold = 0.98
loc = np.where(correlation >= threshhold)
result = full_image.copy()
for pt in zip(*loc[::-1]):
cv2.rectangle(result, pt, (pt[0]+ww, pt[1]+hh), (0,0,255), 1)
print(pt)
cv2.imwrite('puzzle_piece.png', puzzleP)
cv2.imwrite('full_image_alpha.png', alpha)
cv2.imwrite('full_image_matches.jpg', result)
EDIT: Here's an example of the two files (piece_1.png and puzzle_1.jpg) (this example has many mismatches) https://i.sstatic.net/HIj7t.jpg
Upvotes: 0
Views: 2073
Reputation: 53089
This seems to work fine for me on your given image in Python/OpenCV.
Large image:
Small image:
import cv2
import numpy as np
# read images
full_image = cv2.imread('puzzle_1.jpg')
piece = cv2.imread('piece_1.png', cv2.IMREAD_UNCHANGED)
# convert piece to gray and threshold to binary
partial_image = cv2.cvtColor(piece,cv2.COLOR_BGR2GRAY)
partial_image = cv2.threshold(partial_image, 0, 255, cv2.THRESH_BINARY)[1]
# get largest contour from binary image
contours = cv2.findContours(partial_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
big_contour = max(contours, key=cv2.contourArea)
# draw the contour of the piece outline as the mask
mask = np.zeros((55, 55, 3), dtype=np.uint8)
cv2.drawContours(mask, [big_contour], 0, (255,255,255), 1)
hh, ww = mask.shape[:2]
# extract the template from the BGR (no alpha) piece
template = piece[:,:,0:3]
correlation = cv2.matchTemplate(full_image, template, cv2.TM_CCORR_NORMED, mask=mask)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(correlation)
max_val_ncc = '{:.3f}'.format(max_val)
print("normalize_cross_correlation: " + max_val_ncc)
xx = max_loc[0]
yy = max_loc[1]
print('xmatchloc =',xx,'ymatchloc =',yy)
# draw template bounds and corner intersection in red onto img
result = full_image.copy()
cv2.rectangle(result, (xx, yy), (xx+ww, yy+hh), (0, 0, 255), 1)
# save results
cv2.imwrite('puzzle_template.png', template)
cv2.imwrite('puzzle_mask.png', mask)
cv2.imwrite('full_image_matches.jpg', result)
# show results
cv2.imshow('full_image', full_image)
cv2.imshow('piece', piece)
cv2.imshow('partial_image', partial_image)
cv2.imshow('mask', mask)
cv2.imshow('template', template)
cv2.imshow('result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
(bgr) Template:
Mask:
Largest Match Location:
Upvotes: 1