Giles
Giles

Reputation: 1687

Pandas Keyerror after groupby

I want to filter a dataframe after having done a group by on it but am getting a keyerror, here is some example code:


df = pd.DataFrame([
                [0, 1, 'm', 5.0], [0, 1, 'm', -7.0],[0, 1, 'm', 9.0],[0, 1, 'm', 32.0],[0, 1, 'm', -11.0],
                [0, 6, 'm', -12.0], [0, 6, 'm', 15.0],[0, 6, 'm', -16.0],[0, 6, 'm', -3.0],[0, 6, 'm', 21.0],
                [0, 12, 'm', 15.0], [0, 12, 'm', 51.0],[0, 12, 'm', 4.0],[0, 12, 'm', 3.0],[0, 12, 'm', 1.0],
                [1, 1, 'm', 5.0], [1, 1, 'm', -7.0],[1, 1, 'm', 9.0],[1, 1, 'm', 32.0],[1, 1, 'm', -11.0],
                [1, 6, 'm', -12.0], [1, 6, 'm', 15.0],[1, 6, 'm', -16.0],[1, 6, 'm', -3.0],[1, 6, 'm', 21.0],
                [1, 12, 'm', 15.0], [1, 12, 'm', 51.0],[1, 12, 'm', 4.0],[1, 12, 'm', 3.0],[1, 12, 'm', 1.0]
                ],
                columns=['id', 'timeperiod', 'timeperiodtype', 'value'])
df['good'] = df['value'].apply(lambda x: 1 if x>0 else 0)
print(df)
print(df[df['timeperiod']>6])

df = df[['id', 'timeperiod','timeperiodtype','good']][df['timeperiod']>0].groupby(['id','timeperiod','timeperiodtype']).mean()

print(df[df['timeperiod']>6])

I want to avoid using reset_index as in the final code I will have several dataframes of similar shape that I will be aggregating/merging/concatenating.

I am sure I must be missing something obvious.

How can I use the column names to filter the grouped dataframe?

Upvotes: 3

Views: 6359

Answers (1)

jezrael
jezrael

Reputation: 863701

Use DataFrame.loc for filter by condition and by columns names and then for avoid MultiIndex add DataFrame.reset_index or parameter as_index=False:

df = df.loc[df['timeperiod']>0, ['id', 'timeperiod','timeperiodtype','good']].groupby(['id','timeperiod','timeperiodtype']).mean().reset_index()

Or:

df = df.loc[df['timeperiod']>0, ['id', 'timeperiod','timeperiodtype','good']].groupby(['id','timeperiod','timeperiodtype'], as_index=False).mean()

print(df)
   id  timeperiod timeperiodtype  good
0   0           1              m   0.6
1   0           6              m   0.4
2   0          12              m   1.0
3   1           1              m   0.6
4   1           6              m   0.4
5   1          12              m   1.0

print(df[df['timeperiod']>6])
   id  timeperiod timeperiodtype  good
2   0          12              m   1.0
5   1          12              m   1.0

EDIT:

For filter in MuiltiIndex is possible use Index.get_level_values:

df = df.loc[df['timeperiod']>0, ['id', 'timeperiod','timeperiodtype','good']].groupby(['id','timeperiod','timeperiodtype']).mean()
print(df)
                              good
id timeperiod timeperiodtype      
0  1          m                0.6
   6          m                0.4
   12         m                1.0
1  1          m                0.6
   6          m                0.4
   12         m                1.0
   
print(df[df.index.get_level_values('timeperiod')>6])
                              good
id timeperiod timeperiodtype      
0  12         m                1.0
1  12         m                1.0

Upvotes: 4

Related Questions