Reputation: 219
I'm pretty sure this was discussed before but I'm struggling verbalizing the problem: For example, I'm looking for this data frame...
iris %>%
mutate(has_petal_1.4 = Petal.Length == 1.4 | Petal.Width == 1.4,
width_greater_1 = Sepal.Width > 1 & Petal.Width > 1)
...without having to name the variables in the conditions explicitly. Is there a way to pass the variable names using a string vector? Unfortunately, this doesn't seem to work:
varsel <- c('Petal.Length', 'Petal.Width')
iris %>%
mutate(has_petal_1.4 = 1.4 %in% c(!!! syms(varsel)))
Moreover, I wonder whether there is a solution using tidyselect within the mutate() function. So far, I used the new and handy across() function in order to mutate multiple variables. Is it possible to use it for conditions as well? Here another example that doesn't work:
iris %>%
mutate(has_petal_1.4 = across(c(starts_with('Petal')), function(x) {1.4 %in% x}))
Any help is highly appreciated.
Upvotes: 1
Views: 657
Reputation: 887048
There are multiple ways, one option is c_across
library(dplyr) # >= 1.0.0
iris %>%
rowwise %>%
mutate(has_petal_1.4 = any(c_across(varsel) == 1.4),
width_greater_1 = all(c_across(ends_with('Width')) > 1)) %>%
ungroup
# A tibble: 150 x 7
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species has_petal_1.4 width_greater_1
# <dbl> <dbl> <dbl> <dbl> <fct> <lgl> <lgl>
# 1 5.1 3.5 1.4 0.2 setosa TRUE FALSE
# 2 4.9 3 1.4 0.2 setosa TRUE FALSE
# 3 4.7 3.2 1.3 0.2 setosa FALSE FALSE
# 4 4.6 3.1 1.5 0.2 setosa FALSE FALSE
# 5 5 3.6 1.4 0.2 setosa TRUE FALSE
# 6 5.4 3.9 1.7 0.4 setosa FALSE FALSE
# 7 4.6 3.4 1.4 0.3 setosa TRUE FALSE
# 8 5 3.4 1.5 0.2 setosa FALSE FALSE
# 9 4.4 2.9 1.4 0.2 setosa TRUE FALSE
#10 4.9 3.1 1.5 0.1 setosa FALSE FALSE
# … with 140 more rows
Or a faster option with rowSums
iris %>%
mutate(has_petal_1.4 = rowSums(select(., varsel) == 1.4) > 0,
width_greater_1 = rowSums(select(., ends_with('Width')) > 1) == 2)
Upvotes: 1