Reputation: 10033
I have a dataframe df
with one row, like so:
Player Team Points Mean Price Value
Round
1 Salah Liverpool 4.5 4.5 6.89 1.89
Now I need to add a dummy column at index 0 with an open price 'Price' = 5.0, obtained by df['Price'] - df['Value']
, and all other column values set to 0.0
, ending up with, like so:
Player Team Points Mean Price Value
Round
0 Salah Liverpool 0.0 0.0 5.0 0.0
1 Salah Liverpool 4.5 4.5 6.89 1.89
atleta_data.loc[-1] = [df['Player'].item(),
df['Team'].item(),
0.0,
0.0,
(df['Price'].item() - df['Value'].item()),
0.0]
atleta_data.index = atleta_data.index +1 # shifting index
atleta_data = atleta_data.sort_index() # sorting by index
But I'm getting Rounds 0 and 2.
Player Team Points Mean Price Value
Round
0 Salah Liverpool 0.0 0.0 5.0 0.0
2 Salah Liverpool 4.5 4.5 6.89 1.89
How can I end up with 0 and 1 for Rounds?
Upvotes: 0
Views: 68
Reputation: 323226
Let us try
l = [df['Player'].item(),
df['Team'].item(),
0.0,
0.0,
(df['Price'].item() - df['Value'].item()),
0.0]
pd.DataFrame([l],columns=df.columns,index=[0]).append(df)
Out[127]:
Player Team Points Mean Price Value
0 Salah Liverpool 0.0 0.0 5.00 0.00
1 Salah Liverpool 4.5 4.5 6.89 1.89
Upvotes: 1
Reputation: 54148
You may use .reset_index()
atleta_data = atleta_data.sort_index().reset_index()
Upvotes: 2