Reputation: 340
I created a simple neural network for binary classification from scratch (inspired by an implementation from one of Andrew Ng's classes). However, I think I got the backprop portion wrong somewhere because gradient descent fails to minimize the cost. In this example, after about the 1300th iteration, dJ/dW becomes NaN (and subsequently, W becomes NaN as well). I double checked my equations, but I don't see where I made my mistake. Any ideas?
My code:
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
class BinaryClassifier:
def __init__(self, X, Y, hidden_layers, num_iterations, learning_rate=1.2):
np.random.seed(1)
self.X = X
self.Y = Y
self.Z = {}
self.A = {}
self.W = {}
self.b = {}
self.dZ = {} # dJ/dZ (derivative with respect to Z)
self.dA = {} # dJ/dA (derivative with respect to A)
self.dW = {} # dJ/dW (derivative with respect to W)
self.db = {} # dJ/db (derivative with respect to b)
self.m = self.Y.shape[1] # number of training examples
# hyper parameters:
self.layers = hidden_layers + [1] # the final layer in logestic regression will be a single logistic unit
self.L = len(self.layers) # number of layers (not counting the input layer)
self.num_iterations = num_iterations
self.learning_rate = learning_rate
##### initialize parameters: #####
nodes_prev_layer = self.X.shape[0] # get number of nodes from input layer
for layer, nodes in enumerate(self.layers):
# n.b. scale `W` with Xavier/He initialization:
self.W[layer+1] = np.random.randn(nodes, nodes_prev_layer) * np.sqrt(2/nodes_prev_layer)
self.b[layer+1] = np.zeros((nodes, 1))
nodes_prev_layer = nodes
###### utility functions: #####
def relu_function(self, Z):
return np.maximum(Z, 0)
def sigmoid_function(self, Z):
return 1/(1 + np.exp(-Z))
def relu_gradient(self, Z):
return np.where(Z > 0, 1, 0)
def sigmoid_gradient(self, Z):
return self.sigmoid_function(Z) * (1 - self.sigmoid_function(Z))
##### forward propagation steps: #####
def linear_forward(self, A_prev, W, b, activation):
""" Forward step (linear + activation) for single layer.
"""
Z = np.dot(W, A_prev) + b
if activation == 'relu':
A = self.relu_function(Z)
elif activation == 'sigmoid':
A = self.sigmoid_function(Z)
else:
raise ValueError('Invalid activation function: %s' % activation)
assert A.shape == Z.shape
return A, Z
def forward_propagation(self):
""" Feed forward through all layers.
"""
# the 'activated' unit for layer 0 is just the input:
self.A[0] = np.copy(self.X)
# propagate and compute activations for hidden layers
for l in range(1, self.L+1):
if l < self.L:
activation = 'relu'
# use last layer for logistic activation:
else:
activation = 'sigmoid'
self.A[l], self.Z[l] = self.linear_forward(self.A[l-1], self.W[l], self.b[l], activation)
AL = self.A[self.L]
return AL
def compute_cost(self, Y_hat):
cost = -1/self.m * np.sum( (self.Y*np.log(Y_hat)) + ((1-self.Y) * np.log(1-Y_hat)) )
cost = np.squeeze(cost)
assert(cost.shape == ())
return cost
##### backward propagation steps: #####
def linear_backward(self, A_prev, dA, W, Z, b, activation='relu'):
""" Backward propagation (activation + linear) for a single layer.
"""
if activation == 'relu':
dZ = dA * self.relu_gradient(Z)
elif activation == 'sigmoid':
dZ = dA * self.sigmoid_gradient(Z)
else:
raise ValueError('Invalid activation function: %s' % activation)
dW = 1/self.m * np.dot(dZ, A_prev.T)
db = 1/self.m * np.sum(dZ, axis=1, keepdims=True)
dA_prev = np.dot(W.T, dZ) # dA for the previous layer (dA[l-1])
assert dA_prev.shape == A_prev.shape
assert dW.shape == W.shape
return dA_prev, dZ, dW, db
def backward_propagation(self):
""" Backward propagation for all layers.
"""
for l in reversed(range(1, self.L+1)):
if l == self.L:
self.dA[l] = -(np.divide(self.Y, self.A[l]) - np.divide(1-self.Y, 1-self.A[l]))
activation = 'sigmoid'
else:
activation = 'relu'
self.dA[l-1], self.dZ[l], self.dW[l], self.db[l] = self.linear_backward(self.A[l-1], self.dA[l], self.W[l], self.Z[l], self.b[l], activation)
def update_parameters(self):
""" Updtes W and b parameters after single iteration of backprop.
"""
for l in range(1, self.L+1):
self.W[l] -= (self.learning_rate * self.dW[l])
self.b[l] -= (self.learning_rate * self.db[l])
##### train/predict methods: #####
def train_binary_classification_model(self, print_cost=True):
""" Trains model and updates parameters.
"""
np.random.seed(1)
for i in range(self.num_iterations):
AL = self.forward_propagation()
if print_cost and i % 500 == 0:
cost = self.compute_cost(AL)
print('cost at %s iterations: %s' % (i, cost))
self.backward_propagation()
self.update_parameters()
def predict(self):
AL = self.forward_propagation()
return np.where(AL > 0.5, 1, 0)
And to generate sample data and train the model:
def generate_data():
np.random.seed(1)
m = 400 # number of examples
N = int(m/2) # number of points per class
D = 2 # dimensionality
X = np.zeros((m,D)) # data matrix where each row is a single example
Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
a = 4 # maximum ray of the flower
for j in range(2):
ix = range(N*j,N*(j+1))
t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
########################################
# main:
########################################
X, Y = generate_data()
# train a binary classifcation model with a single hidden layer (4 nodes):
planar_network = BinaryClassifier(X, Y, [4], 4000, learning_rate=1.2)
planar_network.train_binary_classification_model()
# output:
# cost at 0 iterations: 0.9897586239010666
# cost at 500 iterations: 0.5513227406119928
# cost at 1000 iterations: 0.5457089978185676
# cost at 1500 iterations: nan
# cost at 2000 iterations: nan
# ...
Upvotes: 4
Views: 321
Reputation: 1456
You are getting cost = nan
because in any of your steps, it encountered invalid value.
There can be 2 reasons for that in this network:
log(0)
number/0
So, you need to change the following things:
Add a variable in your class
self.epsilon = 0.00001
Change the function compute_cost
:
def compute_cost(self, Y_hat):
cost = -1/self.m * np.sum( (self.Y*np.log(Y_hat+self.epsilon)) + ((1-self.Y) * np.log(1-Y_hat+self.epsilon)) )
cost = np.squeeze(cost)
assert(cost.shape == ())
return cost
Change the function backward_propagation
:
def backward_propagation(self):
""" Backward propagation for all layers.
"""
for l in reversed(range(1, self.L+1)):
if l == self.L:
self.dA[l] = -(np.divide(self.Y, self.A[l]+self.epsilon) - np.divide(1-self.Y, 1-self.A[l]+self.epsilon))
activation = 'sigmoid'
else:
activation = 'relu'
self.dA[l-1], self.dZ[l], self.dW[l], self.db[l] = self.linear_backward(self.A[l-1], self.dA[l], self.W[l], self.Z[l], self.b[l], activation)
I have added self.epsilon
in cases of occurance of invalid values.
Now your code will work.
Upvotes: 2