Reputation: 2807
What I do is to create dummies to indicate whether a continuous variable exceeds a certain threshold (1) or is below this threshold (0). I achieved this via several repetitive mutates, which I would like to substitute with a loop.
# load tidyverse
library(tidyverse)
# create data
data <- data.frame(x = runif(1:100, min=0, max=100))
# What I do
data <- data %>%
mutate(x20 = ifelse(x >= 20, 1, 0)) %>%
mutate(x40 = ifelse(x >= 40, 1, 0)) %>%
mutate(x60 = ifelse(x >= 60, 1, 0)) %>%
mutate(x80 = ifelse(x >= 80, 1, 0))
# What I would like to do
for (i in seq(from=0, to=100, by=20)){
data %>% mutate(paste(x,i) = ifelse(x >= i, 1,0))
}
Thank you.
Upvotes: 4
Views: 1760
Reputation: 35554
You can use reduce()
in purrr
.
library(dplyr)
library(purrr)
reduce(seq(0, 100, by = 20), .init = data,
~ mutate(.x, !!paste0('x', .y) := as.integer(x >= .y)))
# x x0 x20 x40 x60 x80 x100
# 1 61.080545 1 1 1 1 0 0
# 2 63.036673 1 1 1 1 0 0
# 3 71.064322 1 1 1 1 0 0
# 4 1.821416 1 0 0 0 0 0
# 5 24.721454 1 1 0 0 0 0
The corresponding base
way with Reduce()
:
Reduce(function(df, y){ df[paste0('x', y)] <- as.integer(df$x >= y); df },
seq(0, 100, by = 20), data)
Upvotes: 4
Reputation: 3438
Ronak's base R is probably the best, but for completeness here's another way similar to how you were originally doing it, just with dplyr:
for (i in seq(from=0, to=100, by=20)){
var <- paste0('x',i)
data <- mutate(data, !!var := ifelse(x >= i, 1,0))
}
x x0 x20 x40 x60 x80 x100
1 99.735037 1 1 1 1 1 0
2 9.075226 1 0 0 0 0 0
3 73.786282 1 1 1 1 0 0
4 89.744719 1 1 1 1 1 0
5 34.139207 1 1 0 0 0 0
6 88.138611 1 1 1 1 1 0
Upvotes: 3
Reputation: 388982
You can use map_dfc
here :
library(dplyr)
library(purrr)
breaks <- seq(from=0, to=100, by=20)
bind_cols(data, map_dfc(breaks, ~
data %>% transmute(!!paste0('x', .x) := as.integer(x > .x))))
# x x0 x20 x40 x60 x80 x100
#1 6.2772517 1 0 0 0 0 0
#2 16.3520358 1 0 0 0 0 0
#3 25.8958212 1 1 0 0 0 0
#4 78.9354970 1 1 1 1 0 0
#5 35.7731737 1 1 0 0 0 0
#6 5.7395139 1 0 0 0 0 0
#7 49.7069551 1 1 1 0 0 0
#8 53.5134559 1 1 1 0 0 0
#...
#....
Although, I think it is much simpler in base R :
data[paste0('x', breaks)] <- lapply(breaks, function(x) as.integer(data$x > x))
Upvotes: 4