Reputation: 117
What is the correct way to implement a data descriptor inside a metaclass? In the following (trivial) example, I wish to always append a question mark to the desired value before setting it:
class AddQDesc:
def __init__ (self, name):
self.name = name
def __get__ (self, instance, owner=None):
obj = instance if instance != None else owner
return obj.__dict__[self.name]
def __set__ (self, instance, value):
# What should go here ?
#setattr(instance, self.name, "{}?".format(value)) <- This gives me recursion error
#instance.__dict__[self.name] = "{}?".format(value) <- This gives me proxymapping error
pass
class Meta (type):
var = AddQDesc("var")
class C (metaclass=Meta):
var = 5
print(C.var)
C.var = 1
print(C.var)
First, it looks like the descriptor was not used when I initialized var to 5. Can I somehow apply descriptor protocol here as well? (Make it "5?") Second, how should the value be updated in the __set__ method? Updating the __dict__ gives me "TypeError: 'mappingproxy' object does not support item assignment" and using setattr gives me "RecursionError: maximum recursion depth exceeded while calling a Python object".
Upvotes: 1
Views: 282
Reputation: 110261
As I commented in the question, this is tricky - because there is no way from Python code to change a class' __dict__
attribute directly - one have to call setattr
and let Python set a class attribute - and, setattr
will "see" the descriptor in the metaclass, and call its __set__
instead of modifying the value in the class __dict__
itself. So, you get an infinite recursion loop.
Therefore, if you really require that the attribute proxied by the descriptor will "live" with the same name in the class'dict, you have to resort to: when setting the value, temporarily remove the descriptor from the metaclass, call setattr
to set the value, and then restoring it back.
Also, if you want the values set in the class body to be handled
through the descriptor, they have to be set with setattr
after the
class is created - type.__new__
won't check for the descriptor
as it builds the initial class __dict__
.
from threading import Lock
class AddQDesc:
def __init__ (self, name):
self.name = name
self.lock = Lock()
def __get__ (self, instance, owner=None):
obj = instance if instance != None else owner
return obj.__dict__[self.name]
def __set__ (self, instance, value):
owner_metaclass = type(instance)
with self.lock:
# Temporarily remove the descriptor to avoid recursion problems
try:
# Note that a metaclass-inheritance hierarchy, where
# the descriptor might be placed in a superclass
# of the instance's metaclass, is not handled here.
delattr(owner_metaclass, self.name)
setattr(instance, self.name, value + 1)
finally:
setattr(owner_metaclass, self.name, self)
class Meta (type):
def __new__(mcls, name, bases, namespace):
post_init = {}
for key, value in list(namespace.items()):
if isinstance(getattr(mcls, key, None), AddQDesc):
post_init[key] = value
del namespace[key]
cls = super().__new__(mcls, name, bases, namespace)
for key, value in post_init.items():
setattr(cls, key, value)
return cls
var = AddQDesc("var")
class C (metaclass=Meta):
var = 5
print(C.var)
C.var = 1
print(C.var)
If you don't need the value to live in the class' __dict__
, I'd suggest just storing it elsewhere - a dictionary in the descriptor instance for example, having the classes as keys, will suffice - and will be far less weird.
class AddQDesc:
def __init__ (self, name):
self.name = name
self.storage = {}
def __get__ (self, instance, owner):
if not instance: return self
return self.storage[instance]
def __set__ (self, instance, value):
self.storage[instance] = value + 1
Upvotes: 2