Reputation: 1825
rdd = spark.sparkContext.parallelize(['a1', 'a2', 'a3', 'a4', 'a5', ])
# convert to as follows
..., ...
..., ...
# show result
rdd.collect()
[Row(col='a1'), Row(col='a2'), Row(col='a3'), Row(col='a4'), Row(col='a5'), ]
I know in Java Spark
we can use Row
but not implemented in PySpark
.
So what is the most suitable way to implement it? Convert it to dict
then convert it rdd
.
Upvotes: 0
Views: 352
Reputation: 13581
Then import Row
package.
rdd = spark.sparkContext.parallelize(['a1', 'a2', 'a3', 'a4', 'a5', ])
from pyspark.sql import Row
rdd.map(lambda x: Row(x)).collect()
[<Row('a1')>, <Row('a2')>, <Row('a3')>, <Row('a4')>, <Row('a5')>]
Upvotes: 1