Reputation: 25
I tried to find recall but type error occur
import pandas as pd
y_test = {'o1': [0,1,0,1],'o2': [1,1,0,1],'o3':[0,0,1,1]}
y_test = pd.DataFrame (y_test)
y_pred = {'o1': [1,1,0,1],'o2': [1,0,0,1],'o3':[1,0,1,1]}
y_pred = pd.DataFrame (y_pred)
y_pred = y_pred.to_numpy()
def precision(y_test, y_pred):
i = set(y_test).intersection(y_pred)
len1 = len(y_pred)
if len1 == 0:
return 0
else:
return len(i) / len1
print("recall of Binary Relevance Classifier: " + str(precision(y_test, y_pred)))
This code shown an error: actually i try to find recall for multi label classification error details iven below
TypeError Traceback (most recent call last)
<ipython-input-41-8f3ca706a8e6> in <module>
16 return len(i) / len1
17
---> 18 print("recall of Binary Relevance Classifier: " + str(precision(y_test, y_pred)))
<ipython-input-41-8f3ca706a8e6> in precision(y_test, y_pred)
9
10 def precision(y_test, y_pred):
---> 11 i = set(y_test).intersection(y_pred)
12 len1 = len(y_pred)
13 if len1 == 0:
TypeError: unhashable type: 'numpy.ndarray'
Upvotes: 2
Views: 13311
Reputation: 1506
Your numpy array y_test
cannot be converted to a set (on line 11), because the array is 2 dimensional.
For an iterable to be converted to a set, the items need to all be hashable. For a 1-d numpy array that's fine, because numbers are hashable:
>>> array_1d = np.array([1, 2, 3])
>>> array_1d
array([1, 2, 3])
>>> set(array_1d)
{1, 2, 3}
But for a 2-d array, you'll get this error because the nested arrays are not themselves hashable:
>>> array_2d = np.array([[1,2,3], [1,2,3], [1,2,3]])
>>> array_2d
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
>>> set(array_2d)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'numpy.ndarray'
Upvotes: 6