Reputation: 3
I have a dataframe that looks like this:
date data
2013-09-03 10
2013-09-04 9
2013-10-03 14
2014-09-02 13
2015-08-07 12
2016-09-02 17
I then apply the code below to select only month 9
import pandas as pd
import datetime as dt
df= df[df['Date'].dt.month == 9] # select only the 9th month
This gets me the following:
date data
2013-09-03 10
2013-09-04 9
2014-09-02 13
2016-09-02 17
But what I am trying to create is a column for each time the 9th month is selected so it can become a separate column:
date data 2013 2014 2016
2013-09-03 10 10
2013-09-04 9 9
2014-09-07 13 13
2016-09-08 17 17
I think I have to use the dt.year function in a for loop to create a column for each year, but I think there may be a simpler solution in pandas?
Upvotes: 0
Views: 44
Reputation: 323326
You can try crosstab
s = pd.crosstab(index=df.index,columns=df.date.dt.year,values=df.data,aggfunc='sum').fillna('')
df = df.join(s)
df
Out[45]:
date data 2013 2014 2016
0 2013-09-03 10 10
1 2013-09-04 9 9
2 2014-09-02 13 13
3 2016-09-02 17 17
Upvotes: 1