Reputation: 95
I am looking for the best and optimized way (without loops) to get a 2D max Tensor from a 3D Tensor based on the maximum one value using TensorFlow 1.14. let's say we have this Tensor and this function(for understanding-it's not working-):
def get_Max(inputs):
max_indices = [0,0,0]
for i in range(16):
for j in range(2048):
for k in range(10):
if(inputs[max_indices[0],max_indices[1],max_indices[2]]<inputs[i,j,k]):
max_indices = [i,j,k]
return inputs[:][j]
inputs = tf.random.uniform(shape=[16,2048,10],dtype=tf.dtypes.float32)
output = get_Max(inputs)
So, output tensor must have a shape of [16,10], which are the 16 maximums from 2048. So, How can implement a function that can do this without loops ?
I used tf.math.reduce_max
but it's not what i am looking for as it's clear in the image below:
Upvotes: 1
Views: 758
Reputation: 4251
inp = tf.random.uniform(shape=[4, 6, 2], maxval=20, dtype=tf.int32)
print(inp)
array([[[14, 8],
[18, 10],
[ 6, 14],
[ 8, 9],
[11, 11],
[14, 13]],
[[ 7, 18],
[ 4, 10],
[15, 6],
[ 6, 2],
[19, 11],
[10, 4]],
[[ 8, 1],
[ 1, 3],
[ 4, 17],
[15, 7],
[ 0, 0],
[ 1, 4]],
[[ 5, 0],
[15, 12],
[ 1, 16],
[ 3, 17],
[14, 17],
[ 2, 18]]], dtype=int32)>
So if I understood correctly, for each inp[i, :, :]
like:
[[14, 8],
[18, 10],
[ 6, 14],
[ 8, 9],
[11, 11],
[14, 13]]
you want to keep the item that contains the max number, in this case the second row: [18, 10]
. What I'd do is to first find the max number along the last axis:
am = tf.math.reduce_max(inp, axis=2)
am[0, :, :]
[14,
18,
14,
9,
11,
14]
and then find the index of the row that contains the max number:
am = tf.math.argmax(am, axis=1)
These will be the j
s you want, then you can use tf.gather_nd
and enumerate to get those values:
# [*enumerate(am)] = [(0, am[0]), (1, am[1]), ...]
tf.gather_nd(inp, [*enumerate(am)])
<tf.Tensor: shape=(4, 2), dtype=int32, numpy=
array([[18, 10],
[19, 11],
[ 4, 17],
[ 2, 18]], dtype=int32)>
Upvotes: 1