Mat_CR
Mat_CR

Reputation: 25

Create a series of variables with names based on a function argument

I have a series of variables with values 1.2, 2.5 etc. I would like to separate the numbers by decimal, so that I create a new column for the whole number and the decimal point, and then assign a total score.

HT_Q1 <- c(1.2, 2.5, 7.4)
HT_Q2 <- c(2.5, 8.5, 9.5)
AT_Q1 <- c(2.4, 1.2, 1.4)
AT_Q2 <- c(6.5, 1.5, 9.10)
df <- data.frame(HT_Q1, HT_Q2, AT_Q1, AT_Q2)

I can do this using mutate:

mutate(df,
       HT_Q1_G = trunc(HT_Q1),
       HT_Q1_B = HT_Q1 %% 1 * 10,
       HT_Q1_P = (HT_Q1_G * 6) + HT_Q1_B)

However, I would like to write a function so I don't have to repeat the above code for each variable. Is it possible to pass each variable (HT_Q1, HT_Q2 etc.) as an argument to the function and create the corresponding variables (e.g. HT_Q2_G, HT_Q2_B, AT_Q2_G etc.)?

I have tried to create variable names based on the argument I pass to the function but it does not work:

edit_score <- function(var){
  mutate(df,
         paste0(var, "_G") = trunc(var),
         paste0(var, "_B") = var %% 1 * 10,
         paste0(var, "_P") = (paste0(var, "_G") * 6) + paste0(var, "_B"))
}

edit_score(HT_Q1)
edit_score(HT_Q2)
edit_score(AT_Q1)
edit_score(AT_Q2)

I am new to R and come from a SAS background where I am used to using the macro compiler to adjust text in code before it is executed.

Upvotes: 2

Views: 695

Answers (4)

Darren Tsai
Darren Tsai

Reputation: 35584

You can use across() with the feature of lst() that refers to components created earlier.

library(dplyr)

df %>%
  mutate(across(.fns = lst( G = function(x) trunc(x),
                            B = function(x) x %% 1 * 10,
                            P = ~ (G(.) * 6) + B(.) )))

Output

across() automatically creates new column names separated by "_" as you want. You can also customize a new name pattern by the .names argument.

#   HT_Q1 HT_Q2 AT_Q1 AT_Q2 HT_Q1_G HT_Q1_B HT_Q1_P
# 1   1.2   2.5   2.4   6.5       1       2       8
# 2   2.5   8.5   1.2   1.5       2       5      17
# 3   7.4   9.5   1.4   9.1       7       4      46
# 
#   HT_Q2_G HT_Q2_B HT_Q2_P AT_Q1_G AT_Q1_B AT_Q1_P
# 1       2       5      17       2       4      16
# 2       8       5      53       1       2       8
# 3       9       5      59       1       4      10
# 
#   AT_Q2_G AT_Q2_B AT_Q2_P
# 1       6       5      41
# 2       1       5      11
# 3       9       1      55

Upvotes: 1

Gwang-Jin Kim
Gwang-Jin Kim

Reputation: 9865

Only using base R

# python-like string concatenation `+`
`%+%` <- function(str1, str2) { 
  paste0(str1, str2)
}

add_columns <- function(df, col) {
  df[, col %+% "_G"] <- trunc(df[, col])
  df[, col %+% "_B"] <- df[, col] %% 1 * 10
  df[, col %+% "_P"] <- df[,  col %+% "_G"] * 6 + df[, col %+% "_B"]
  df
}

generate_GBP_columns <- function(df) {
  for (col in names(df)) {
    df <- add_columns(df, col)
  }
  df
}

generate_GBP_columns(df)


#   HT_Q1 HT_Q2 AT_Q1 AT_Q2 HT_Q1_G HT_Q1_B HT_Q1_P HT_Q2_G HT_Q2_B HT_Q2_P
# 1   1.2   2.5   2.4   6.5       1       2       8       2       5      17
# 2   2.5   8.5   1.2   1.5       2       5      17       8       5      53
# 3   7.4   9.5   1.4   9.1       7       4      46       9       5      59
#   AT_Q1_G AT_Q1_B AT_Q1_P AT_Q2_G AT_Q2_B AT_Q2_P
# 1       2       4      16       6       5      41
# 2       1       2       8       1       5      11
# 3       1       4      10       9       1      55

Upvotes: 0

Jumble
Jumble

Reputation: 1178

When using tidyverse, it's important to have your data in a tidy, long format. This makes using the tidyverse functions a lot easier. Using the gather function, we can convert your data to a long format and mutate will apply the functions to all values.

HT_Q1 <- c(1.2, 2.5, 7.4)
HT_Q2 <- c(2.5, 8.5, 9.5)
AT_Q1 <- c(2.4, 1.2, 1.4)
AT_Q2 <- c(6.5, 1.5, 9.10)
df <- data.frame(HT_Q1, HT_Q2, AT_Q1, AT_Q2)

df <- df %>%
  gather() %>%
  mutate(G = trunc(value), 
         B = value %% 1 * 10,
         P = G*6 + B)

#     key value G B  P
#1  HT_Q1   1.2 1 2  8
#2  HT_Q1   2.5 2 5 17
#3  HT_Q1   7.4 7 4 46
#4  HT_Q2   2.5 2 5 17
#5  HT_Q2   8.5 8 5 53
#6  HT_Q2   9.5 9 5 59
#7  AT_Q1   2.4 2 4 16
#8  AT_Q1   1.2 1 2  8
#9  AT_Q1   1.4 1 4 10
#10 AT_Q2   6.5 6 5 41
#11 AT_Q2   1.5 1 5 11
#12 AT_Q2   9.1 9 1 55

If you really want to go back to wide format, though not recommended, you can pivot back with the following:

df <- df %>%
  pivot_wider(id_cols = key, names_from = key, values_from = value:P, values_fn=list, , names_glue = "{key}_{.value}") %>%
  unnest(cols=everything())
colnames(df) = gsub("_value", "", colnames(df))

#  HT_Q1 HT_Q2 AT_Q1 AT_Q2 HT_Q1_G HT_Q2_G AT_Q1_G AT_Q2_G HT_Q1_B HT_Q2_B AT_Q1_B AT_Q2_B HT_Q1_P HT_Q2_P AT_Q1_P AT_Q2_P
#1   1.2   2.5   2.4   6.5       1       2       2       6       2       5       4       5       8      17      16      41
#2   2.5   8.5   1.2   1.5       2       8       1       1       5       5       2       5      17      53       8      11
#3   7.4   9.5   1.4   9.1       7       9       1       9       4       5       4       1      46      59      10      55

Upvotes: 1

Ronak Shah
Ronak Shah

Reputation: 389012

You can use non-standard evaluation here :

library(dplyr)
library(purrr)
library(rlang)

edit_score <- function(var){
  transmute(df,
         !!paste0(var, "_G") := trunc(!!sym(var)),
         !!paste0(var, "_B") := !!sym(var) %% 1 * 10,
         !!paste0(var, "_P") := !!sym(paste0(var, "_G")) * 6 + 
                                !!sym(paste0(var, "_B")))
}

bind_cols(df, map_dfc(names(df), edit_score))

sym converts character value of column name to symbol and !! is used to evaluate it.


Non-standard evaluation can be difficult to understand initially, in such case you can also use this base R approach :

edit_score <- function(var){
  col1 <- paste0(var, "_G")
  col2 <- paste0(var, "_B")
  col3 <- paste0(var, "_P")
  df[[col1]] <- trunc(df[[var]])
  df[[col2]] <- df[[var]] %% 1 * 10
  df[[col3]] <- df[[col1]] * 6 + df[[col2]]
  df[, c(col1, col2, col3)]
}

cbind(df, do.call(cbind, lapply(names(df), edit_score)))

Upvotes: 2

Related Questions