Reputation: 85
Will the first and second snippets of coe produce the same network?
First:
conv_layer = layers.Conv2D(
filter_dim,
(3, 3),
activation='relu',
kernel_initializer='he_normal',
padding='same'
)(previous_layer)
Second:
conv_layer = layers.Conv2D(filter_dim, (3, 3), kernel_initializer='he_normal', padding='same')(previous_layer)
conv_layer = layers.Activation('relu')(conv_layer)
Upvotes: 0
Views: 51
Reputation: 2762
Yes. Keras API allows for both.
Look at this example:
#inline
encoder_input = keras.Input(shape=(28, 28, 1), name="img")
x = layers.Conv2D(16, 3, activation="relu")(encoder_input)
encoder_output = layers.GlobalMaxPooling2D()(x)
encoder = keras.Model(encoder_input, encoder_output, name="encoder")
encoder.summary()
# in 2 sentences
encoder_input = keras.Input(shape=(28, 28, 1), name="img")
x = layers.Conv2D(16, 3)(encoder_input)
x = layers.Activation("relu")(x)
encoder_output = layers.GlobalMaxPooling2D()(x)
encoder = keras.Model(encoder_input, encoder_output, name="encoder")
encoder.summary()
You get
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
img (InputLayer) (None, 28, 28, 1) 0
_________________________________________________________________
conv2d_25 (Conv2D) (None, 26, 26, 16) 160
_________________________________________________________________
global_max_pooling2d_6 (Glob (None, 16) 0
=================================================================
Total params: 160
Trainable params: 160
Non-trainable params: 0
_________________________________________________________________
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
img (InputLayer) (None, 28, 28, 1) 0
_________________________________________________________________
conv2d_26 (Conv2D) (None, 26, 26, 16) 160
_________________________________________________________________
global_max_pooling2d_7 (Glob (None, 16) 0
=================================================================
Total params: 160
Trainable params: 160
Non-trainable params: 0
_________________________________________________________________
Upvotes: 1