Reputation: 19
I have a panel data set with 159 countries between 2009 and 2017.
When I use Stargazer to create a table with summary statistics it uses the values for all years. E.g. the mean of GDP would be the mean value for all countries and years.
What I would like to get is the summary statistics of each year. E.g. Summary statistics for 2009, 2010,..., 2017.
The panel data set looks like this:
area_code year area_name area_group Executive Constraints Government Effectiveness
1 AFG 2009 Afghanistan Asia-Pacific 39.60269 28.00944
2 AFG 2010 Afghanistan Asia-Pacific 39.60269 28.07446
3 AFG 2011 Afghanistan Asia-Pacific 39.60269 20.82287
4 AFG 2012 Afghanistan Asia-Pacific 39.60269 20.85591
5 AFG 2013 Afghanistan Asia-Pacific 39.60269 21.32710
6 AFG 2014 Afghanistan Asia-Pacific 39.60269 21.19488
7 AFG 2015 Afghanistan Asia-Pacific 39.60269 21.48040
8 AFG 2016 Afghanistan Asia-Pacific 38.26936 21.52523
9 AFG 2017 Afghanistan Asia-Pacific 38.93603 26.52632
10 AGO 2009 Angola Sub-Saharan Africa 37.83082 22.59876
11 AGO 2010 Angola Sub-Saharan Africa 37.83082 23.14201
12 AGO 2011 Angola Sub-Saharan Africa 37.83082 32.67216
13 AGO 2012 Angola Sub-Saharan Africa 37.83082 32.39330
14 AGO 2013 Angola Sub-Saharan Africa 37.83082 33.26756
15 AGO 2014 Angola Sub-Saharan Africa 37.83082 32.09595
Ideally I would like to get an output for a the year(s) specified.
E.g. For 2009:
Descriptive statistics 2009
================================================================================================================
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
----------------------------------------------------------------------------------------------------------------
Executive Constraints 1,412 55.484 16.464 17.545 42.888 64.848 94.848
Government Effectiveness 1,412 52.581 21.991 8.305 36.281 65.687 96.493
Upvotes: 0
Views: 1290
Reputation: 173803
You could use stargazer
in an lapply
after using split
on your data frame to split by year. Here I have used the mtcars
data set since there isn't really enough sample data in the question to demonstrate. This produces a summary table for each group of cars according to the number of cylinders they have. Of course, in your case you would instead split by year.
result <- lapply(split(mtcars, mtcars$cyl), stargazer::stargazer, type = "text")
#>
#> =============================================================
#> Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
#> -------------------------------------------------------------
#> mpg 11 26.664 4.510 21.400 22.800 30.400 33.900
#> cyl 11 4.000 0.000 4 4 4 4
#> disp 11 105.136 26.872 71 78.8 120.7 147
#> hp 11 82.636 20.935 52 65.5 96 113
#> drat 11 4.071 0.365 3.690 3.810 4.165 4.930
#> wt 11 2.286 0.570 1.513 1.885 2.622 3.190
#> qsec 11 19.137 1.682 16.700 18.560 19.950 22.900
#> vs 11 0.909 0.302 0 1 1 1
#> am 11 0.727 0.467 0 0.5 1 1
#> gear 11 4.091 0.539 3 4 4 5
#> carb 11 1.545 0.522 1 1 2 2
#> -------------------------------------------------------------
#>
#> ============================================================
#> Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
#> ------------------------------------------------------------
#> mpg 7 19.743 1.454 18 18.6 21 21
#> cyl 7 6.000 0.000 6 6 6 6
#> disp 7 183.314 41.562 145 160 196.3 258
#> hp 7 122.286 24.260 105 110 123 175
#> drat 7 3.586 0.476 2.760 3.350 3.910 3.920
#> wt 7 3.117 0.356 2.620 2.822 3.440 3.460
#> qsec 7 17.977 1.707 15.500 16.740 19.170 20.220
#> vs 7 0.571 0.535 0 0 1 1
#> am 7 0.429 0.535 0 0 1 1
#> gear 7 3.857 0.690 3 3.5 4 5
#> carb 7 3.429 1.813 1 2.5 4 6
#> ------------------------------------------------------------
#>
#> =============================================================
#> Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
#> -------------------------------------------------------------
#> mpg 14 15.100 2.560 10.400 14.400 16.250 19.200
#> cyl 14 8.000 0.000 8 8 8 8
#> disp 14 353.100 67.771 276 301.8 390 472
#> hp 14 209.214 50.977 150 176.2 241.2 335
#> drat 14 3.229 0.372 2.760 3.070 3.225 4.220
#> wt 14 3.999 0.759 3.170 3.533 4.014 5.424
#> qsec 14 16.772 1.196 14.500 16.098 17.555 18.000
#> vs 14 0.000 0.000 0 0 0 0
#> am 14 0.143 0.363 0 0 0 1
#> gear 14 3.286 0.726 3 3 3 5
#> carb 14 3.500 1.557 2 2.2 4 8
#> -------------------------------------------------------------
Created on 2020-08-22 by the reprex package (v0.3.0)
Upvotes: 2