Reputation: 1
I am a begineer in nlp, as I was giving this competition https://www.kaggle.com/c/contradictory-my-dear-watson I am using the model 'bert-base-multilingual-uncased' and using BERT tokenizer from the same. I am also using kaggle tpu. This is the custom dataloader I created.
class SherlockDataset(torch.utils.data.Dataset):
def __init__(self,premise,hypothesis,tokenizer,max_len,target = None):
super(SherlockDataset,self).__init__()
self.premise = premise
self.hypothesis = hypothesis
self.tokenizer = tokenizer
self.max_len = max_len
self.target = target
def __len__(self):
return len(self.premise)
def __getitem__(self,item):
sen1 = str(self.premise[item])
sen2 = str(self.hypothesis[item])
encode_dict = self.tokenizer.encode_plus(sen1,
sen2,
add_special_tokens = True,
max_len = self.max_len,
pad_to_max_len = True,
return_attention_mask = True,
return_tensors = 'pt'
)
input_ids = encode_dict["input_ids"][0]
token_type_ids = encode_dict["token_type_ids"][0]
att_mask = encode_dict["attention_mask"][0]
if self.target is not None:
sample = {
"input_ids":input_ids,
"token_type_ids":token_type_ids,
"att_mask":att_mask,
"targets": self.target[item]
}
else:
sample = {
"input_ids":input_ids,
"token_type_ids":token_type_ids,
"att_mask":att_mask
}
return sample
and during the time of loading data in dataloader
def train_fn(model,dataloader,optimizer,criterion,scheduler = None):
model.train()
print("train")
for idx, sample in enumerate(dataloader):
'''
input_ids = sample["input_ids"].to(config.DEVICE)
token_type_ids = sample["token_type_ids"].to(config.DEVICE)
att_mask = sample["att_mask"].to(config.DEVICE)
targets = sample["targets"].to(config.DEVICE)
'''
print("train_out")
input_ids = sample[0].to(config.DEVICE)
token_type_ids = sample[1].to(config.DEVICE)
att_mask = sample[2].to(config.DEVICE)
targets = sample[3].to(config.DEVICE)
optimizer.zero_grad()
output = model(input_ids,token_type_ids,att_mask)
output = np.argmax(output,axis = 1)
loss = criterion(outputs,targets)
accuracy = accuracy_score(output,targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),1.0)
xm.optimizer_step(optimizer, barrier=True)
if scheduler is not None:
scheduler.step()
if idx%50==0:
print(f"idx : {idx}, TRAIN LOSS : {loss}")
I am facing this error again and again
RuntimeError: Caught RuntimeError in DataLoader worker process 0. Original Traceback (most recent
call last): File "/opt/conda/lib/python3.7/site-packages/torch/utils/data/_utils/worker.py", line
178,
in _worker_loop data = fetcher.fetch(index) File "/opt/conda/lib/python3.7/site-
packages/torch/utils/data/_utils/fetch.py", line 47, in fetch return self.collate_fn(data) File
"/opt/conda/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py", line 79, in
default_collate return [default_collate(samples) for samples in transposed] File
"/opt/conda/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py", line 79, in return
[default_collate(samples) for samples in transposed] File "/opt/conda/lib/python3.7/site-
packages/torch/utils/data/_utils/collate.py", line 55, in default_collate return torch.stack(batch,
0, out=out) RuntimeError: stack expects each tensor to be equal size, but got [47] at entry 0 and
[36] at entry 1
I have tried changing num_workers values,changing batch sizes. I have checked the data and none of the text in it is null, 0 or corrupt in any sense. I have also tried changing max_len in tokenizer but I am not able to find out solution to this problem. Please check and let me know how can I fix it.
Upvotes: 0
Views: 722
Reputation: 1
data_loader = torch.utils.data.DataLoader( batch_size=batch_size, dataset=data, shuffle=shuffle, num_workers=0, collate_fn=lambda x: x )
Use of Collate_fn in dataloader should be able to solve the problem.
Upvotes: 0