Reputation: 543
I have an access database name DB_IMPORT_2020.accdb. It contains only one table named DB_IMPORT_2020_PM. I've been struggling a lot trying to import that table to Pandas. What I've been doing so far is:
# define components of our connection string
driver = '{Microsoft Access Driver (*.mdb, *.accdb)}'
filepath = r"C:\Users\corra\Desktop\DB_IMPORT_2020.accdb"
# create a connection to the database
cnxn = pyodbc.connect(driver = driver, dbq = filepath, autocommit = True)
crsr = cnxn.cursor()
# define the components of a query
table_name = 'DB_IMPORT_2020_PM'
# define query
query = "SELECT * FROM {}".format(table_name)
# execute the query
crsr.execute(query)
data = crsr.fetchall()
df = pd.DataFrame(data)
Then I come to the situation where I have a pandas dataframe with a single column and a list in each row.
0
________________________________________________________
0 [86232, 2019-09-12, INTERNET, ... , N ]
1 [86233, 2019-09-12, INTERNET, ... , M ]
2 [86234, 2019-09-12, MEZZO LIBERO, ... , Q ]
3 ...
I feel like this is not the right way to do it and it is overly complicated. Does anyone know a simpler way to read data in a table of Access with Pandas?
This is the list i get with data = crsr.fetchall()
[(86232, datetime.datetime(2019, 9, 12, 0, 0), 'INTERNET', 'A.M Web', 'Brand_SMX', 0.0, 'gen', '20_FCST', 'OnLine', 'dipendente s', 'Low Rev.', 'STX', 'A.M', 'INTERNET', 'Brand_SMX', 'dipendente s', 'STORICI', 'TIER 1', 1.0, 'TIER 1', 'ALIMENTARI', '04_SRF', 'SMX', 'ALTRI', 'STC', 'Reservation', 'Off + On', 'Online_Res', 'TIER 1', None, None, None, None),
(86233, datetime.datetime(2019, 9, 12, 0, 0), 'INTERNET', 'A.M Web', 'Brand_SMX', 0.0, 'feb', '20_FCST', 'OnLine', 'dipendente s', 'Low Rev.', 'STC', 'A. M', 'INTERNET', 'Brand_SMX', 'dipendente s', 'STORICI', 'TIER 1', 1.0, 'TIER 1', 'ALIMENTARI', '04_SRF', 'SMX', 'ALTRI', 'STX', 'Reservation', 'Off + On', 'Online_Res', 'TIER 1', None, None, None, None),
(86234, datetime.datetime(2019, 9, 12, 0, 0), 'MEZZO LIBERO', 'S ITALIA SRL', 'S ELECTRONICS', 0.0, 'gen', '20_FCST', 'OffLine', 'BO / CI', 'Low Rev.', 'STX', 'S Italia Srl', 'MEZZO LIBERO', 'S', 'BEN BOT', 'STORICI', 'INTERCx', 1.0, 'INTERCx', 'INFORMATICA/FOTOGRAFIA', '04_SRF', 'SMX', 'ALTRI', 'STC', 'Reservation', 'Off + On', 'Offline_Res', 'INTX', None, None, None, None),...]
Upvotes: 4
Views: 8020
Reputation: 123519
The easiest way to work with an Access database and pandas is to use the sqlalchemy-access dialect (which I maintain).
Does anyone know a simpler way to read data in a table of Access with Pandas?
Just use pandas' read_sql_table method:
import pandas as pd
import sqlalchemy as sa
table_name = 'DB_IMPORT_2020_PM'
engine = sa.create_engine("access+pyodbc://@my_accdb_dsn")
df = pd.read_sql_table(table_name, engine)
Upvotes: 4
Reputation: 1058
Your data is a list
of tuples
, you need to add the columns when creating the dataframe as described here:
df = pd.DataFrame(data,columns = ["col1","col2",...,"coln"])
Upvotes: 0