Reputation: 165
I have a dataframe like this -
df = pd.DataFrame(
{'key': [1, 2, 3, 4],
'col1': [['apple','orange'], ['pineapple'], ['','','guava','',''], ['','','orange','apple','']],
'col2': [['087','799'], ['681'], ['078'], ['816','018']]
}
)
# key col1 col2
#0 1 [apple, orange] [087, 799]
#1 2 [pineapple] [681]
#2 3 [, , guava, , ] [078]
#3 4 [, , orange, apple, ] [816, 018]
I need to split the columns 'col1' and 'col2' and create separate rows, but map the list elements according to their indices. The desired output is this -
desired_df = pd.DataFrame(
{'key': [1, 1, 2, 3, 4, 4],
'col1': [['apple'],['orange'],['pineapple'], ['guava'], ['orange'],['apple']],
'col2': [['087'],['799'], ['681'], ['078'], ['816'],['018']]
}
)
In col1, there might be elements that are blanks, but the overall length of the non-empty col1 element will match with the length of the corresponding elements of col2. Examples: rows 2 and 3 of df.
I tried the following, but it did not work -
df.set_index(['key'])[['col1','col2']].apply(pd.Series).stack().reset_index(level=1, drop=True)
Upvotes: 2
Views: 575
Reputation: 856
try this
newkeys= list(itertools.chain.from_iterable(df.apply(lambda vals : [vals[0]]*len(vals[2]), axis=1).tolist()))
newcol1, newcol2 = list(itertools.chain.from_iterable(df.col1)), list(itertools.chain.from_iterable(df.col2))
newcol1=list(filter(None, newcol1))
pd.DataFrame(zip(*[newkeys, newcol1, newcol2]), columns=df.columns)
Upvotes: 0
Reputation: 4482
For the sake of complexity :)
pd.DataFrame([j for i in [[{"key": x['key'],"col1": y,'col2':x['col2'][list(filter(None, x['col1'])).index(y)]} for y in list(filter(None, x['col1']))]for idx, x in df.iterrows()] for j in i])
Output
| key | col1 | col2 |
|------:|:----------|-------:|
| 1 | apple | 087 |
| 1 | orange | 799 |
| 2 | pineapple | 681 |
| 3 | guava | 078 |
| 4 | orange | 816 |
| 4 | apple | 018 |
Upvotes: 0
Reputation: 597
try creating new df on top of old one like this
df['key'] = df.apply(lambda x: [x['key']]*len(x['col2']), axis=1)
lst_col = ['key', 'col1', 'col2']
df = pd.DataFrame({
col:[x for lst in list(df[col]) for x in lst if x!=""] for col in lst_col
})
Output
key col1 col2
0 1 apple 087
1 1 orange 799
2 2 pineapple 681
3 3 guava 078
4 4 orange 816
5 4 apple 018
Upvotes: 2
Reputation: 59549
Since you know that the number of non-empty elements in each list will always match, you can explode
each column separately, filter out the blanks, and join the results back. Add on a .reset_index()
if you want 'key'
back as a column.
import pandas as pd
pd.concat([df.set_index('key')[[col]].explode(col).query(f'{col} != ""')
for col in ['col1', 'col2']], axis=1)
# Without the f-string
#pd.concat([df.set_index('key')[[col]].explode(col).query(col + ' != ""')
# for col in ['col1', 'col2']], axis=1)
col1 col2
key
1 apple 087
1 orange 799
2 pineapple 681
3 guava 078
4 orange 816
4 apple 018
If you are using an older verions of pandas
that doesn't allow for the explode
method use @BEN_YO's method to unnest. I'll copy the relevant code over here since there are a few different versions to choose from.
import numpy as np
def unnesting(df, explode):
idx = df.index.repeat(df[explode[0]].str.len())
df1 = pd.concat([
pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
df1.index = idx
return df1.join(df.drop(explode, 1), how='left')
pd.concat([unnesting(df.set_index('key')[[col]], explode=[col]).query(f'{col} !=""')
for col in ['col1', 'col2']], axis=1)
# Same output as above
Upvotes: 4