Reputation: 73
I'm trying to plot on a bar graph a year long set of values with Python/Pandas. The resulting graph is quite cluttered and my attempts to set xtick labels are not working.
My original code:
import datetime as dt
import random
import pandas as pd
#generate year-long list of dates
i = 0
list_of_dates = []
last_date = dt.date(2017, 1, 1)
while i < 365:
list_of_dates.append(last_date)
last_date += dt.timedelta(days=1)
#print(last_date)
i = i + 1
#generate random values for example
daily_rainfall = []
j = 0
while j < 365:
daily_rainfall.append(random.randint(0,3))
j = j + 1
#put lists in DF
rainfall_dataframe = pd.DataFrame(list(zip(list_of_dates, daily_rainfall)),columns=["Date","Precipitation"])
rainfall_dataframe = rainfall_dataframe.groupby(["Date"]).sum()
rainfall_dataframe.plot(kind="bar", figsize=(13,7))
returns this:
Unusable, obviously. So I wanted it to only label x-ticks on a monthly basis. I tried creating a list of datetime date objects that was only the first of every month but when I try to pass this to df.plot() it returns nothing.
xlablist = []
xlablist.append(dt.date(2017, 1, 1))
xlablist.append(dt.date(2017, 6, 1))
xlablist.append(dt.date(2018, 1, 1))
rainfall_dataframe.plot(kind="bar", figsize=(13,7), xticks=xlablist)
returns:
Please help!
Upvotes: 0
Views: 5393
Reputation: 31011
One of possible solutions, using MonthLocator to specify where to put x labels and DateFormatter to specify the format of labels:
# Imports
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
# Create source data
np.random.seed(0)
dates = pd.date_range(start='2017-01-01', end='2017-12-31')
rainfall = np.random.randint(0, 20, dates.size)
# Drawing
fig, ax = plt.subplots(figsize=(10, 4))
plt.xlabel('Month')
plt.ylabel('mm')
plt.title('Rainfall 2017')
ax.xaxis.set_major_locator(mdates.MonthLocator())
fmt = mdates.DateFormatter('%b %Y')
ax.xaxis.set_major_formatter(fmt)
ax.bar(dates, rainfall)
plt.setp(ax.get_xticklabels(), rotation=30);
For the above source data I got the following picture:
Upvotes: 1
Reputation: 30070
You could use Date locators.
import datetime as dt
import random
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
#generate year-long list of dates
i = 0
list_of_dates = []
last_date = dt.date(2017, 1, 1)
while i < 365:
list_of_dates.append(last_date)
last_date += dt.timedelta(days=1)
#print(last_date)
i = i + 1
#generate random values for example
daily_rainfall = []
j = 0
while j < 365:
daily_rainfall.append(random.randint(0,3))
j = j + 1
#put lists in DF
rainfall_dataframe = pd.DataFrame(list(zip(list_of_dates, daily_rainfall)),columns=["Date","Precipitation"])
rainfall_dataframe = rainfall_dataframe.groupby(["Date"]).sum()
rainfall_dataframe.plot(kind="bar", figsize=(13,7))
plt.gca().xaxis.set_major_locator(mdates.MonthLocator())
plt.xticks(rotation=45)
plt.show()
Upvotes: 0