Reputation: 778
Hello im currently trying to convert this array
test=np.array([[0,0],[0,1],[1,1],[3,0]])
and using Manhattan distance to convert this array into this shape
[0., 1., 2., 3.]
[1., 0., 1., 4.]
[2., 1., 0., 3.,
[3., 4., 3., 0.]
the code goes like this
list_x=[]
newarray=np.array([])
length=len(test)
for i in range(length):
for j in range(length):
print('i=',i)
print('j=',j)
var=sum(abs(a-b) for a,b in zip(test[i],test[j]))
list_x.append(var)
newarray= np.append(newarray,list_x,axis = 0)
list_x=[]
but the outcome of the code keeps giving me this:
array([0., 1., 2., 3., 1., 0., 1., 4., 2., 1., 0., 3., 3., 4., 3., 0.])
is there a problem in my np.append() that prevent to convert it to 4*4 shap array ?
Upvotes: 2
Views: 117
Reputation: 12397
Another way of doing it is using Scipy:
from scipy.spatial.distance import cdist
cdist(test,test,'cityblock')
output:
[[0. 1. 2. 3.]
[1. 0. 1. 4.]
[2. 1. 0. 3.]
[3. 4. 3. 0.]]
Comparison:
#@ehsan's solution
def m1(test):
return cdist(test,test,'cityblock')
#@yatu's solution
def m2(test):
return manhattan_distances(test)
in_ = [np.random.randint(0,10,(n,2)) for n in [10,100,1000,10000]]
For large arrays they seem to have similar performance, but for smaller array (around 1000 rows) m1 seems faster.
Upvotes: 0
Reputation: 88226
You could go with scikit-learn's manhattan_distances
to obtain all pairwise manhattan distances simplifying the above to a single function call:
from sklearn.metrics.pairwise import manhattan_distances
manhattan_distances(test)
array([[0., 1., 2., 3.],
[1., 0., 1., 4.],
[2., 1., 0., 3.],
[3., 4., 3., 0.]])
If you wanted to obtain the distance with a for loop, I'd suggest you to use python lists instead. In order to end up with a nested list, generate an inner list with the distances of a row to the others, and append it to an outer list on each iteration:
out=[]
for i in range(length):
new_row = []
for j in range(length):
var=sum(abs(a-b) for a,b in zip(test[i],test[j]))
new_row.append(var)
out.append(new_row)
print(out)
# [[0, 1, 2, 3], [1, 0, 1, 4], [2, 1, 0, 3], [3, 4, 3, 0]]
Upvotes: 1