Reputation: 60
I wrote code for Runge-Kutta 4 for solving system of ODEs.
It works fine for 1-D ODE but when I try to solve x'' + kx = 0
I have a problem trying to define a vectorial function:
Let u1 = x
and u2 = x' = u1'
, then the system looks like:
u1' = u2
u2' = -k*u1
If u = (u1,u2)
and f(u, t) = (u2, -k*u1)
, then we need to solve:
u' = f(u, t)
def f(u,t, omega=2):
u, v = u
return np.asarray([v, -omega**2*u])
My entire code is:
import numpy as np
def ode_RK4(f, X_0, dt, T):
N_t = int(round(T/dt))
# Create an array for the functions ui
u = np.zeros((len(X_0),N_t+1)) # Array u[j,:] corresponds to the j-solution
t = np.linspace(0, N_t*dt, N_t + 1)
# Initial conditions
for j in range(len(X_0)):
u[j,0] = X_0[j]
# RK4
for j in range(len(X_0)):
for n in range(N_t):
u1 = f(u[j,n] + 0.5*dt* f(u[j,n], t[n])[j], t[n] + 0.5*dt)[j]
u2 = f(u[j,n] + 0.5*dt*u1, t[n] + 0.5*dt)[j]
u3 = f(u[j,n] + dt*u2, t[n] + dt)[j]
u[j, n+1] = u[j,n] + (1/6)*dt*( f(u[j,n], t[n])[j] + 2*u1 + 2*u2 + u3)
return u, t
def demo_exp():
import matplotlib.pyplot as plt
def f(u,t):
return np.asarray([u])
u, t = ode_RK4(f, [1] , 0.1, 1.5)
plt.plot(t, u[0,:],"b*", t, np.exp(t), "r-")
plt.show()
def demo_osci():
import matplotlib.pyplot as plt
def f(u,t, omega=2):
# u, v = u Here I've got a problem
return np.asarray([v, -omega**2*u])
u, t = ode_RK4(f, [2,0], 0.1, 2)
for i in [1]:
plt.plot(t, u[i,:], "b*")
plt.show()
In advance, thank you.
Upvotes: 0
Views: 4286
Reputation: 402
You are on the right path, but when applying time-integration methods such as RK to vector valued ODEs, one essentially does the exact same thing as in the scalar case, just with vectors.
Thus, you skip the for j in range(len(X_0))
loop and associated indexation and you make sure that you pass initial values as vectors (numpy arrays).
Also cleaned up the indexation for t
a little and stored the solution in a list.
import numpy as np
def ode_RK4(f, X_0, dt, T):
N_t = int(round(T/dt))
# Initial conditions
usol = [X_0]
u = np.copy(X_0)
tt = np.linspace(0, N_t*dt, N_t + 1)
# RK4
for t in tt[:-1]:
u1 = f(u + 0.5*dt* f(u, t), t + 0.5*dt)
u2 = f(u + 0.5*dt*u1, t + 0.5*dt)
u3 = f(u + dt*u2, t + dt)
u = u + (1/6)*dt*( f(u, t) + 2*u1 + 2*u2 + u3)
usol.append(u)
return usol, tt
def demo_exp():
import matplotlib.pyplot as plt
def f(u,t):
return np.asarray([u])
u, t = ode_RK4(f, np.array([1]) , 0.1, 1.5)
plt.plot(t, u, "b*", t, np.exp(t), "r-")
plt.show()
def demo_osci():
import matplotlib.pyplot as plt
def f(u,t, omega=2):
u, v = u
return np.asarray([v, -omega**2*u])
u, t = ode_RK4(f, np.array([2,0]), 0.1, 2)
u1 = [a[0] for a in u]
for i in [1]:
plt.plot(t, u1, "b*")
plt.show()
Upvotes: 2
Reputation: 60
The model is this: enter image description here
From the Langtangen’s book Programming for Computations - Python.
Upvotes: 1