Reputation: 113
I am receiving the following json response for a distances matrix which was gathered using the following code:
import requests
import json
payload = {
"origins": [{"latitude": 54.6565153, "longitude": -1.6802816}, {"latitude": 54.6365153, "longitude": -1.6202816}], #surgery
"destinations": [{"latitude": 54.6856522, "longitude": -1.2183634}, {"latitude": 54.5393295, "longitude": -1.2623914}, {"latitude": 54.5393295, "longitude": -1.2623914}], #oa - up to 625 entries
"travelMode": "driving",
"startTime": "2014-04-01T11:59:59+01:00",
"timeUnit": "second"
}
headers = {"Content-Length": "497", "Content-Type": "application/json"}
paramtr = {"key": "INSERT_KEY_HERE"}
r = requests.post('https://dev.virtualearth.net/REST/v1/Routes/DistanceMatrix', data = json.dumps(payload), params = paramtr, headers = headers)
data = r.json()["resourceSets"][0]["resources"][0]
and am attempting to flatten:
destinations.latitude, destinations.longitude, origins.latitude, origins.longitude, departureTime, destinationIndex, originIndex, totalWalkDuration, travelDistance, travelDuration
from:
{'__type': 'DistanceMatrix:http://schemas.microsoft.com/search/local/ws/rest/v1',
'destinations': [{'latitude': 54.6856522, 'longitude': -1.2183634},
{'latitude': 54.5393295, 'longitude': -1.2623914},
{'latitude': 54.5393295, 'longitude': -1.2623914}],
'errorMessage': 'Request completed.',
'origins': [{'latitude': 54.6565153, 'longitude': -1.6802816},
{'latitude': 54.6365153, 'longitude': -1.6202816}],
'results': [{'departureTime': '/Date(1396349159000-0700)/',
'destinationIndex': 0,
'originIndex': 0,
'totalWalkDuration': 0,
'travelDistance': 38.209,
'travelDuration': 3082},
{'departureTime': '/Date(1396349159000-0700)/',
'destinationIndex': 1,
'originIndex': 0,
'totalWalkDuration': 0,
'travelDistance': 40.247,
'travelDuration': 2708},
{'departureTime': '/Date(1396349159000-0700)/',
'destinationIndex': 2,
'originIndex': 0,
'totalWalkDuration': 0,
'travelDistance': 40.247,
'travelDuration': 2708},
{'departureTime': '/Date(1396349159000-0700)/',
'destinationIndex': 0,
'originIndex': 1,
'totalWalkDuration': 0,
'travelDistance': 34.857,
'travelDuration': 2745},
{'departureTime': '/Date(1396349159000-0700)/',
'destinationIndex': 1,
'originIndex': 1,
'totalWalkDuration': 0,
'travelDistance': 36.895,
'travelDuration': 2377},
{'departureTime': '/Date(1396349159000-0700)/',
'destinationIndex': 2,
'originIndex': 1,
'totalWalkDuration': 0,
'travelDistance': 36.895,
'travelDuration': 2377}]}
The best I have currently achieved is:
json_normalize(outtie, record_path="results", meta="origins")
However this contains nested origins and destinations refuse to append. I also tried to drop the type to see if it made a difference, and explored max_level= and record_prefix='_' but to no avail.
Upvotes: 2
Views: 539
Reputation: 62383
flatten_json
, however, it can be useful for JSON objects that are less thoughtfully constructed.
list
in destinations
, corresponds to the list
in results
, which means, when they are normalized, they'll have the same index.# create a dataframe for results and origins
res_or = pd.json_normalize(data, record_path=['results'], meta=[['origins']])
# create a dataframe for destinations
dest = pd.json_normalize(data, record_path=['destinations'], record_prefix='dest_')
# normalize the origins column in res_or
orig = pd.json_normalize(res_or.origins).rename(columns={'latitude': 'origin_lat', 'longitude': 'origin_long'})
# concat the dataframes
df = pd.concat([res_or, orig, dest], axis=1).drop(columns=['origins'])
# display(df)
departureTime destinationIndex originIndex totalWalkDuration travelDistance travelDuration origin_lat origin_long dest_latitude dest_longitude
0 /Date(1396349159000-0700)/ 0 0 0 38.209 3082 54.656515 -1.680282 54.685652 -1.218363
1 /Date(1396349159000-0700)/ 1 0 0 40.247 2708 54.656515 -1.680282 54.539330 -1.262391
2 /Date(1396349159000-0700)/ 2 0 0 40.247 2708 54.656515 -1.680282 54.539330 -1.262391
destinations
and origins
, so it's easy to create a separate dataframe for each key, and then .merge
the dataframes.
orig
and dest
, corresponds to destinationIndex
and originsIndex
in results
.# create three separate dataframe
results = pd.json_normalize(data, record_path=['results'])
dest = pd.json_normalize(data, record_path=['destinations'], record_prefix='dest_')
orig = pd.json_normalize(data, record_path=['origins'], record_prefix='orig_')
# merge them at the appropriate location
df = pd.merge(results, dest, left_on='destinationIndex', right_index=True)
df = pd.merge(df, orig, left_on='originIndex', right_index=True)
# display(df)
departureTime destinationIndex originIndex totalWalkDuration travelDistance travelDuration dest_latitude dest_longitude orig_latitude orig_longitude
0 /Date(1396349159000-0700)/ 0 0 0 38.209 3082 54.685652 -1.218363 54.656515 -1.680282
1 /Date(1396349159000-0700)/ 1 0 0 40.247 2708 54.539330 -1.262391 54.656515 -1.680282
2 /Date(1396349159000-0700)/ 2 0 0 40.247 2708 54.539330 -1.262391 54.656515 -1.680282
3 /Date(1396349159000-0700)/ 0 1 0 34.857 2745 54.685652 -1.218363 54.636515 -1.620282
4 /Date(1396349159000-0700)/ 1 1 0 36.895 2377 54.539330 -1.262391 54.636515 -1.620282
5 /Date(1396349159000-0700)/ 2 1 0 36.895 2377 54.539330 -1.262391 54.636515 -1.620282
Upvotes: 3
Reputation: 20598
I encountered something like this before, the best i got is a recursive function that creates a OrderedDict, then i loop through that so here it is.
def flatten(data, sep="_"):
import collections
obj = collections.OrderedDict()
def recurse(temp, parent_key=""):
if isinstance(temp, list):
for i in range(len(temp)):
recurse(temp[i], parent_key + sep + str(i) if parent_key else str(i))
elif isinstance(temp, dict):
for key, value in temp.items():
recurse(value, parent_key + sep + key if parent_key else key)
else:
obj[parent_key] = temp
recurse(data)
return obj
When you loop through it, your data will look something like this
for key, value in flatten(a).items():
print(key, value)
destinations_0_latitude 54.6856522
destinations_0_longitude -1.2183634
destinations_1_latitude 54.5393295
destinations_1_longitude -1.2623914
destinations_2_latitude 54.5393295
destinations_2_longitude -1.2623914
The reason why i use seperator is, it gives you extendibility, so you can use
key.split("_")
['destinations', '0', 'latitude'] 54.6856522
['destinations', '0', 'longitude'] -1.2183634
After that you can adapt statements easily, like
if key.split("_")[2] = "latitude":
do something...
if key.endswith("latitude"):
do something...
Upvotes: 2