Flitx
Flitx

Reputation: 61

Reversing OneHotEncoding into list while creating labels

i have a DataFrame with shape(12000, 21) that looks like this:

id   CID  U_lot P4 P5 P6 P7 P8 P9
 0 A0694     M   0  1  0  1  1  0
 1 A1486     M   0  0  1  0  0  0
 2 C0973     S   0  1  1  0  0  0
 3 B4251     D   0  0  0  1  0  1
 4 I0041     S   1  0  0  1  1  0
 5 J1102     F   0  0  0  0  0  1

how do i transform the DataFrame to look like this:

id    CID U_lot  P_lots Label
 0  A0694     M [P5,P7]    P8
 1  A0694     M [P5,P8]    P7
 2  A0694     M [P7,P8]    P5
 3  A1486     M     NAN    P6
 4  C0973     S    [P5]    P6
 5  C0973     S    [P6]    P5
 6  B4251     D    [P7]    P8
 7  B4251     D    [P8]    P7
 8  I0041     S [P4,P7]    P8
 9  I0041     S [P4,P8]    P7
10  I0041     S [P7,P8]    P4
11  J1102     F     NAN    P9

i have tried reversing pd.get_dummies but it dosen't seem to work.

Upvotes: 1

Views: 61

Answers (1)

ALollz
ALollz

Reputation: 59579

Getting the list column really kills the efficiency. But if it's necessary, first stack (or melt) the DataFrame into a long format. At this point also keep track of all of the rows we will need in the final output (necessary to get those NaN rows later).

df1 = (df.set_index(['id', 'CID', 'U_lot'])
         .stack()
         .loc[lambda x: x!=0]
         .reset_index(-1)
         .drop(columns=0)
         .rename(columns={'level_3': 'Label'}))

idx = df1.set_index('Label', append=True).index

Then we will merge that long DataFrame with itself so we can get all of the 'P_lots', excluding the label that is split out with a query.

df1 = (df1.merge(df1, left_index=True, right_index=True, suffixes=['', '_r'])
          .query('Label != Label_r'))

Finally, groupby to get the list and reindex to get back the NaN

df1 = (df1.groupby(['id', 'CID', 'U_lot', 'Label'])
          .agg(P_lot=('Label_r', list))
          .reindex(idx)
          .reset_index())

    id    CID U_lot Label     P_lot
0    0  A0694     M    P5  [P7, P8]
1    0  A0694     M    P7  [P5, P8]
2    0  A0694     M    P8  [P5, P7]
3    1  A1486     M    P6       NaN
4    2  C0973     S    P5      [P6]
5    2  C0973     S    P6      [P5]
6    3  B4251     D    P7      [P9]
7    3  B4251     D    P9      [P7]
8    4  I0041     S    P4  [P7, P8]
9    4  I0041     S    P7  [P4, P8]
10   4  I0041     S    P8  [P4, P7]
11   5  J1102     F    P9       NaN

Upvotes: 3

Related Questions