Reputation: 2079
I want to build a network that should be able to verificate images (e.g. human faces). As I understand, that the best solution for that is Siamese network with a triplet loss. I didn't found any ready-made implementations, so I decided to create my own.
But I have question about Keras. For example, here's the structure of the network:
And the code is something like that:
embedding = Sequential([
Flatten(),
Dense(1024, activation='relu'),
Dense(64),
Lambda(lambda x: K.l2_normalize(x, axis=-1))
])
input_a = Input(shape=shape, name='anchor')
input_p = Input(shape=shape, name='positive')
input_n = Input(shape=shape, name='negative')
emb_a = embedding(input_a)
emb_p = embedding(input_p)
emb_n = embedding(input_n)
out = Concatenate()([emb_a, emb_p, emp_n])
model = Model([input_a, input_p, input_n], out)
model.compile(optimizer='adam', loss=<triplet_loss>)
I defined only one embedding model. Does this mean that once the model starts training weights would be the same for each input?
If it is, how can I extract embedding weights from the model
?
Upvotes: 1
Views: 1435
Reputation: 450
I will answer on how to extract the embeddings (reference from my Github post):
My trained siamese model looked like this:
siamese_model.summary()
Note that my newly redefined model is basically the same as the one highlighted in yellow
I then redefined my model which I wanted to use for extracting embeddings (It should be the same model you defined except now it will not have those multiple inputs like siamese) which looked like this:
siamese_embeddings_model = build_siamese_model(input_shape)
siamese_embeddings_model .summary()
Then I just extracted the weights from my trained siamese model and set them into my new model
embeddings_weights = siamese_model.layers[-3].get_weights()
siamese_embeddings_model.set_weights(embeddings_weights )
Then you can supply the new Image to extract the embeddings from the new model
vector = siamese.predict(image)
len(vector[0])
it will print 150 because of my fine dense layer (which are the output vector)
Upvotes: 1
Reputation:
Yes, In triplet loss function weights should be shared across all three networks, i.e Anchor, Positive and Negetive.
In Tensorflow 1.x to achieve weight sharing you can use reuse=True
in tf.layers
.
But in Tensorflow 2.x since the tf.layers
has been moved to tf.keras.layers
and reuse
functionality has been removed.
To achieve weight sharing you can write a custom layer that takes the parent layer and reuses its weights.
Below is the sample example to do the same.
class SharedConv(tf.keras.layers.Layer):
def __init__(
self,
filters,
kernel_size,
strides=None,
padding=None,
dilation_rates=None,
activation=None,
use_bias=True,
**kwargs
):
self.filters = filters
self.kernel_size = kernel_size
self.strides = strides
self.padding = padding
self.dilation_rates = dilation_rates
self.activation = activation
self.use_bias = use_bias
super().__init__(*args, **kwargs)
def build(self, input_shape):
self.conv = Conv2D(
self.filters,
self.kernel_size,
padding=self.padding,
dilation_rate=self.dilation_rates[0]
)
self.net1 = Activation(self.activation)
self.net2 = Activation(self.activation)
def call(self, inputs, **kwargs):
x1 = self.conv(inputs)
x1 = self.act1(x1)
x2 = tf.nn.conv2d(
inputs,
self.conv.weights[0],
padding=self.padding,
strides=self.strides,
dilations=self.dilation_rates[1]
)
if self.use_bias:
x2 = x2 + self.conv.weights[1]
x2 = self.act2(x2)
return x1, x2
Upvotes: 3