Reputation: 25
I have two dataframes. One in which are the search queries of a user in a webshop (102377 rows) and another in which are the clicks of the user out of the search (8004 rows).
queries:
index term timestamp
...
10 tight 2018-09-27 20:09:23
11 differential pressure 2018-09-27 20:09:30
12 soot pump 2018-09-27 20:09:32
13 gas pressure 2018-09-27 20:09:46
14 case 2018-09-27 20:11:29
15 backpack 2018-09-27 20:18:35
...
clicks
index term timestamp artnr
...
245 soot pump 2018-09-27 20:09:25 9150.0
246 dungarees 2018-09-27 20:10:38 7228.0
247 db23 2018-09-27 20:10:40 7966.0
248 db23 2018-09-27 20:10:55 7971.0
249 sealing blister 2018-09-27 20:12:05 7971.0
250 backpack 2018-09-27 20:18:40 8739.0
...
what I want to do, is join the clicks in the queries. If queries.term equals clicks.term and the difference between clicks.timestamp - queries.timestamp is under 10 and above 0 seconds, the term of the queries dataframe should be replaced by the artnr of the clicks dataframe, so that it looks like:
queries:
index term timestamp
...
10 tight 2018-09-27 20:09:23
11 differential pressure 2018-09-27 20:09:30
12 9150.0 2018-09-27 20:09:32
13 gas pressure 2018-09-27 20:09:46
14 case 2018-09-27 20:11:29
15 8739.0 2018-09-27 20:18:35
...
My first approach was the following:
df_Q['term'] = np.where(((((df_CS.timestamp-df_Q.timestamp).dt.total_seconds() <= 10.0) &
(df_CS.timestamp-df_Q.timestamp).dt.total_seconds() >= 0) &
(df_CS.term.str == df_Q.term.str)), df_CS['artnr'], df_CS['term'])
But this just generated the following error:
ValueError: operands could not be broadcast together with shapes (102377,) (8004,) (8004,)
Is anyone having an idea on how to solve this with a left join, or another solution?
Upvotes: 0
Views: 241
Reputation: 786
queries = pd.DataFrame({'term': ['tight', 'differential pressure', 'soot pump', 'gas pressure', 'case', 'backpack'],
'timestamp': ['2018-09-27 20:09:23', '2018-09-27 20:09:30', '2018-09-27 20:09:32', '2018-09-27 20:09:46', '2018-09-27 20:11:29', '2018-09-27 20:18:35']})
print(queries)
term timestamp
0 tight 2018-09-27 20:09:23
1 differential pressure 2018-09-27 20:09:30
2 soot pump 2018-09-27 20:09:32
3 gas pressure 2018-09-27 20:09:46
4 case 2018-09-27 20:11:29
5 backpack 2018-09-27 20:18:35
clicks = pd.DataFrame({'term': ['soot pump', 'dungarees', 'db23', 'db23', 'sealing blister', 'backpack'],
'timestamp': ['2018-09-27 20:09:25', '2018-09-27 20:10:38', '2018-09-27 20:10:40', '2018-09-27 20:10:55', '2018-09-27 20:12:05', '2018-09-27 20:18:40'],
'artnr':[9150.0, 7228.0, 7966.0, 7971.0, 7971.0, 8739.0]})
print(clicks)
term timestamp artnr
0 soot pump 2018-09-27 20:09:25 9150.0
1 dungarees 2018-09-27 20:10:38 7228.0
2 db23 2018-09-27 20:10:40 7966.0
3 db23 2018-09-27 20:10:55 7971.0
4 sealing blister 2018-09-27 20:12:05 7971.0
5 backpack 2018-09-27 20:18:40 8739.0
First, sort both data frames on the timestamp
queries['timestamp'] = pd.to_datetime(queries['timestamp'])
clicks['timestamp'] = pd.to_datetime(clicks['timestamp'])
queries.sort_values('timestamp', ascending=True, inplace=True)
clicks.sort_values('timestamp', ascending=True, inplace=True)
Then use pd.merge_asof() to join on 'term' column and only if the time difference of 'timestamp' is within the 10 seconds
df = pd.merge_asof(
queries, # left data
clicks, # right data
on="timestamp", # column to check time differnece
by="term", # column to join on
tolerance=pd.Timedelta("10s"), # time difference
direction='forward', # join only if timestamp in right data after timestamp in left data
)
The 'artnr' column will have NA if no match was found. So use non NA values of 'artnr' to replace in 'term'
df['term'][df['artnr'].notna()] = df['artnr']
print(df)
term timestamp artnr
0 tight 2018-09-27 20:09:23 NaN
1 differential pressure 2018-09-27 20:09:30 NaN
2 soot pump 2018-09-27 20:09:32 NaN
3 gas pressure 2018-09-27 20:09:46 NaN
4 case 2018-09-27 20:11:29 NaN
5 8739 2018-09-27 20:18:35 8739.0
Upvotes: 2