Reputation: 51
So I have this script
mport pandas as pd
import numpy as np
PRIMARY_TUMOR_PATIENT_ID_REGEX = '^.{4}-.{2}-.{4}-01.*'
SHORTEN_PATIENT_REGEX = '^(.{4}-.{2}-.{4}).*'
def mutations_for_gene(df):
mutated_patients = df['identifier'].unique()
return pd.DataFrame({'mutated': np.ones(len(mutated_patients))}, index=mutated_patients)
def prep_data(mutation_path):
df = pd.read_csv(mutation_path, low_memory=True, dtype=str, header = 0)#Line 24 reads in a line memory csv file from the given path and parses it based on '\t' delimators, and casts the data to str
df = df[~df['Hugo_Symbol'].str.contains('Hugo_Symbol')] #analyzes the 'Hugo_Symbol' heading within the data and makes a new dataframe where any row that contains 'Hugo_Symbol' is dropped
df['Hugo_Symbol'] = '\'' + df['Hugo_Symbol'].astype(str) # Appends ''\'' to all the data remaining in that column
df['Tumor_Sample_Barcode'] = df['Tumor_Sample_Barcode'].str.strip() #strips away whitespace from the data within this heading
non_silent = df.where(df['Variant_Classification'] != 'Silent') #creates a new dataframe where the data within the column 'Variant_Classification' is not equal to 'Silent'
df = non_silent.dropna(subset=['Variant_Classification']) #Drops all the rows that are missing at least one element
non_01_barcodes = df[~df['Tumor_Sample_Barcode'].str.contains(PRIMARY_TUMOR_PATIENT_ID_REGEX)]
#TODO: Double check that the extra ['Tumor_Sample_Barcode'] serves no purpose
df = df.drop(non_01_barcodes.index)
print(df)
shortened_patients = df['Tumor_Sample_Barcode'].str.extract(SHORTEN_PATIENT_REGEX, expand=False)
df['identifier'] = shortened_patients
gene_mutation_df = df.groupby(['Hugo_Symbol']).apply(mutations_for_gene)
gene_mutation_df.columns = gene_mutation_df.columns.str.strip()
gene_mutation_df.set_index(['Hugo_Symbol', 'patient'], inplace=True)
gene_mutation_df = gene_mutation_df.reset_index()
gene_patient_mutations = gene_mutation_df.pivot(index='Hugo_Symbol', columns='patient', values='mutated')
return gene_patient_mutations.transpose().fillna(0)
This is the csv file that the script reads in:
identifier,Hugo_Symbol,Tumor_Sample_Barcode,Variant_Classification,patient
1,patient,a,Silent,6
22,mutated,d,e,7
1,Hugo_Symbol,f,g,88
The script gives this error:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-60-3f9c00f320bc> in <module>
----> 1 prep_data('test.csv')
<ipython-input-59-2a67d5c44e5a> in prep_data(mutation_path)
21 display(gene_mutation_df)
22 gene_mutation_df.columns = gene_mutation_df.columns.str.strip()
---> 23 gene_mutation_df.set_index(['Hugo_Symbol', 'patient'], inplace=True)
24 gene_mutation_df = gene_mutation_df.reset_index()
25 gene_patient_mutations = gene_mutation_df.pivot(index='Hugo_Symbol', columns='patient', values='mutated')
e:\Anaconda3\lib\site-packages\pandas\core\frame.py in set_index(self, keys, drop, append, inplace, verify_integrity)
4546
4547 if missing:
-> 4548 raise KeyError(f"None of {missing} are in the columns")
4549
4550 if inplace:
KeyError: "None of ['Hugo_Symbol', 'patient'] are in the columns"
Previously, I had this is as that line
gene_mutation_df.index.set_names(['Hugo_Symbol', 'patient'], inplace=True)
But that also gave an error that the set_name length expects one argument but got two
Any help would be much appreciated
I would really prefer if the csv data was changed instead of the script and somehow the script could work with set_names instead of set_index
Upvotes: 1
Views: 940
Reputation: 62403
gene_mutation_df = df.groupby(['Hugo_Symbol']).apply(mutations_for_gene)
'Hugo_Symbol
is used for a groupby
, so now it's in the index, not a column
gene_mutation_df = df.groupby(['Hugo_Symbol']).apply(mutations_for_gene)
print(gene_mutation_df) # print the dataframe to see what it looks like
print(gene_mutation_df.info()) # print the information for the dataframe
gene_mutation_df.columns = gene_mutation_df.columns.str.strip()
gene_mutation_df.set_index(['Hugo_Symbol', 'patient'], inplace=True)
# output
Empty DataFrame
Columns: [identifier, Hugo_Symbol, Tumor_Sample_Barcode, Variant_Classification, patient]
Index: []
Empty DataFrame
Columns: []
Index: []
<class 'pandas.core.frame.DataFrame'>
Index: 0 entries
Empty DataFrameNone
Hugo_Symbol
a column againKeyError
should be resolved. gene_mutation_df = gene_mutation_df.reset_index() # try adding this line
gene_mutation_df.set_index(['Hugo_Symbol', 'patient'], inplace=True)
non_01_barcodes = df[~df['Tumor_Sample_Barcode'].str.contains(PRIMARY_TUMOR_PATIENT_ID_REGEX)]
shortened_patients = df['Tumor_Sample_Barcode'].str.extract(SHORTEN_PATIENT_REGEX, expand=False)
gene_mutation_df = df.groupby(['Hugo_Symbol']).apply(mutations_for_gene)
.empty
to determine if a dataframe is emptydef prep_data(mutation_path):
df = pd.read_csv(mutation_path, low_memory=True, dtype=str, header = 0)#Line 24 reads in a line memory csv file from the given path and parses it based on '\t' delimators, and casts the data to str
df.columns = df.columns.str.strip() # clean the column names here if there is leading or trailing whitespace.
df = df[~df['Hugo_Symbol'].str.contains('Hugo_Symbol')] #analyzes the 'Hugo_Symbol' heading within the data and makes a new dataframe where any row that contains 'Hugo_Symbol' is dropped
df['Hugo_Symbol'] = '\'' + df['Hugo_Symbol'].astype(str) # Appends ''\'' to all the data remaining in that column
df['Tumor_Sample_Barcode'] = df['Tumor_Sample_Barcode'].str.strip() #strips away whitespace from the data within this heading
non_silent = df.where(df['Variant_Classification'] != 'Silent') #creates a new dataframe where the data within the column 'Variant_Classification' is not equal to 'Silent'
df = non_silent.dropna(subset=['Variant_Classification']) #Drops all the rows that are missing at least one element
non_01_barcodes = df[~df['Tumor_Sample_Barcode'].str.contains(PRIMARY_TUMOR_PATIENT_ID_REGEX)]
#TODO: Double check that the extra ['Tumor_Sample_Barcode'] serves no purpose
df = df.drop(non_01_barcodes.index)
print(df)
shortened_patients = df['Tumor_Sample_Barcode'].str.extract(SHORTEN_PATIENT_REGEX, expand=False)
df['identifier'] = shortened_patients
gene_mutation_df = df.groupby(['Hugo_Symbol']).apply(mutations_for_gene)
gene_mutation_df = gene_mutation_df.reset_index() # reset the index here
print(gene_mutation_df)
if gene_mutation_df.empty: # check if the dataframe is empty
print('The dataframe is empty')
else:
# gene_mutation_df.set_index(['Hugo_Symbol', 'patient'], inplace=True) # this is not needed, pivot won't work if you do this
# gene_mutation_df = gene_mutation_df.reset_index() # this is not needed, the dataframe was reset already
gene_patient_mutations = gene_mutation_df.pivot(index='Hugo_Symbol', columns='patient', values='mutated') # values needs to be a column in the dataframe
return gene_patient_mutations.transpose().fillna(0)
Upvotes: 3