yudhiesh
yudhiesh

Reputation: 6829

ValueError: Input 0 of layer sequential_16 is incompatible with the layer: expected ndim=5, found ndim=4. Full shape received: [None, 224, 224, 3]

I am using transfer learning with MobileNet and then sending the extracted features to a LSTM for video data classification.

Images are resized to (224,224) when I set the train,test,validation dataset using image_dataset_from_directory().

EDIT: So I need to pad the sequences of the data but I get the following error when I do so, I am not too sure how I can do it when I am using the image_dataset_from_directory():

train_dataset = sequence.pad_sequences(train_dataset, maxlen=BATCH_SIZE, padding="post", truncating="post")

InvalidArgumentError: assertion failed: [Unable to decode bytes as JPEG, PNG, GIF, or BMP]
     [[{{node decode_image/cond_jpeg/else/_1/decode_image/cond_jpeg/cond_png/else/_20/decode_image/cond_jpeg/cond_png/cond_gif/else/_39/decode_image/cond_jpeg/cond_png/cond_gif/Assert/Assert}}]] [Op:IteratorGetNext]

I checked the train_dataset type:

<BatchDataset shapes: ((None, None, 224, 224, 3), (None, None)), types: (tf.float32, tf.int32)>

Global variables:

TARGETX = 224
TARGETY = 224
CLASSES = 3
SIZE = (TARGETX,TARGETY)
INPUT_SHAPE = (TARGETX, TARGETY, 3)
CHANNELS = 3
NBFRAME = 5
INSHAPE = (NBFRAME, TARGETX, TARGETY, 3)

Mobilenet function:

def build_mobilenet(shape=INPUT_SHAPE, nbout=CLASSES):
    # INPUT_SHAPE = (224,224,3)
    # CLASSES = 3
    model = MobileNetV2(
        include_top=False,
        input_shape=shape,
        weights='imagenet')
    base_model.trainable = True
    output = GlobalMaxPool2D()
    return Sequential([model, output])

LSTM function:

def action_model(shape=INSHAPE, nbout=3):
    # INSHAPE = (5, 224, 224, 3)
    convnet = build_mobilenet(shape[1:])
    
    model = Sequential()
    model.add(TimeDistributed(convnet, input_shape=shape))
    model.add(LSTM(64))
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dense(nbout, activation='softmax'))
    return model
model = action_model(INSHAPE, CLASSES)
model.summary()
Model: "sequential_16"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
time_distributed_6 (TimeDist (None, 5, 1280)           2257984   
_________________________________________________________________
lstm_5 (LSTM)                (None, 64)                344320    
_________________________________________________________________
dense_45 (Dense)             (None, 1024)              66560     
_________________________________________________________________
dropout_18 (Dropout)         (None, 1024)              0         
_________________________________________________________________
dense_46 (Dense)             (None, 512)               524800    
_________________________________________________________________
dropout_19 (Dropout)         (None, 512)               0         
_________________________________________________________________
dense_47 (Dense)             (None, 128)               65664     
_________________________________________________________________
dropout_20 (Dropout)         (None, 128)               0         
_________________________________________________________________
dense_48 (Dense)             (None, 64)                8256      
_________________________________________________________________
dense_49 (Dense)             (None, 3)                 195       
=================================================================
Total params: 3,267,779
Trainable params: 3,233,667
Non-trainable params: 34,112

Upvotes: 0

Views: 971

Answers (1)

mujjiga
mujjiga

Reputation: 16916

You model is perfectly fine. Its the way you are feeding the data is the problem.

Your model code:

import tensorflow as tf
import keras
from keras.layers import GlobalMaxPool2D, TimeDistributed, Dense, Dropout, LSTM
from keras.applications import MobileNetV2
from keras.models import Sequential
import numpy as np
from keras.preprocessing.sequence import pad_sequences

TARGETX = 224
TARGETY = 224
CLASSES = 3
SIZE = (TARGETX,TARGETY)
INPUT_SHAPE = (TARGETX, TARGETY, 3)
CHANNELS = 3
NBFRAME = 5
INSHAPE = (NBFRAME, TARGETX, TARGETY, 3)

def build_mobilenet(shape=INPUT_SHAPE, nbout=CLASSES):
    # INPUT_SHAPE = (224,224,3)
    # CLASSES = 3
    model = MobileNetV2(
        include_top=False,
        input_shape=shape,
        weights='imagenet')
    model.trainable = True
    output = GlobalMaxPool2D()
    return Sequential([model, output])

def action_model(shape=INSHAPE, nbout=3):
    # INSHAPE = (5, 224, 224, 3)
    convnet = build_mobilenet(shape[1:])
    
    model = Sequential()
    model.add(TimeDistributed(convnet, input_shape=shape))
    model.add(LSTM(64))
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dense(nbout, activation='softmax'))
    return model    

Lets try out this model with some dummy data now:

So you model accepts a sequence of images (i.e frames of the video) and classified them (the video) into one of the 3 classes.

Lets create a dummy data with 4 videos each of 10 frames, i.e batch size = 4 and time steps = 10

X = np.random.randn(4, 10, TARGETX, TARGETY, 3)
y = model(X)
print (y.shape)

Output:

(4,3)

As expected the output size is (4,3)

Now the problem you will be facing with using image_dataset_from_direcctory will be how to batch variable length videos since the number of frames in each video will/might vary. The way to handle it is using pad_sequences.

For example if first video has 10 frames second has 9 and so on you can do something like below

X = [np.random.randn(10, TARGETX, TARGETY, 3), 
     np.random.randn(9, TARGETX, TARGETY, 3), 
     np.random.randn(8, TARGETX, TARGETY, 3), 
     np.random.randn(7, TARGETX, TARGETY, 3)]

X = pad_sequences(X)
y = model(X)
print (y.shape)

Output:

(4,3)

So once you read images using image_dataset_from_direcctory you will have to pad the variable length frames into batch.

Upvotes: 2

Related Questions