Reputation: 10203
I'm trying entity extraction with spaCy and Pandas UDF (PySpark) but I get an error.
Using a UDF works without errors but is slow. What am I doing wrong?
Loading the model every time is to avoid load error - Can't find model 'en_core_web_lg'. It doesn't seem to be a shortcut link, a Python package or a valid path to a data directory.
Working UDF:
def __get_entities(x):
global nlp
nlp = spacy.load("en_core_web_lg")
ents=[]
doc = nlp(x)
for ent in doc.ents:
if ent.label_ == 'PERSON' OR ent.label_ == 'ORG':
ents.append(ent.label_)
return ents
get_entities_udf = F.udf(__get_entities), T.ArrayType(T.StringType()))
Pandas UDF with error:
def __get_entities(x):
global nlp
nlp = spacy.load("en_core_web_lg")
ents=[]
doc = nlp(x)
for ent in doc.ents:
if ent.label_ == 'PERSON' OR ent.label_ == 'ORG':
ents.append(ent.label_)
return pd.Series(ents)
get_entities_udf = F.pandas_udf(lambda x: __get_entities(x), "array<string>", F.PandasUDFType.SCALAR)
Error message:
TypeError: Argument 'string'has incorrect type (expected str, got series)
Sample Spark DataFrame:
df = spark.createDataFrame([
['John Doe'],
['Jane Doe'],
['Microsoft Corporation'],
['Apple Inc.'],
]).toDF("name",)
New column:
df_new = df.withColumn('entity',get_entities_udf('name'))
Upvotes: 0
Views: 1330
Reputation: 880
I'm using: pyspark 3.1.1 and python 3.7
The answer above didn't work for me, I and spend quite some time making things work, so I thought I'd share the solution I came up with.
creating a sample of 16 random person and company names
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, ArrayType
from pyspark.sql.functions import pandas_udf, PandasUDFType
from faker import Faker
import spacy
spark = SparkSession.builder.appName("pyspark_sandbox").getOrCreate()
names = []
fake = Faker()
for _ in range(8):
names.append(f"{fake.company()} {fake.company_suffix()}")
names.append(fake.name())
df = spark.createDataFrame(names, StringType())
First, checking the current solution proposed. I'm just Adding a print statement upon loading the spacy model to see how many time we do load the model.
# printing a msg each time we load the model
def load_spacy_model():
print("Loading spacy model...")
return spacy.load("en_core_web_sm")
def entities(x):
global nlp
import spacy
nlp = load_spacy_model()
ents=[]
doc = nlp(x)
for ent in doc.ents:
if ent.label_ == 'PERSON' or ent.label_ == 'ORG':
ents.append(ent.label_)
return ents
def __get_entities(x):
return x.apply(entities)
get_entities_udf = pandas_udf(lambda x: __get_entities(x), "array<string>", PandasUDFType.SCALAR)
df_new = df.withColumn('entity',get_entities_udf('value'))
df_new.show()
We can then see that the model is loaded 16 times, so one for every single entry we process. Not what I want.
Rewriting using the decorator introduce in spark 3.0+ that is using Type Hints (python 3.6+). Then our UDF is using the nlp.pipe() for batch processing the entire pd.Series
# printing a msg each time we load the model
def load_spacy_model():
print("Loading spacy model...")
return spacy.load("en_core_web_sm")
# decorator indicating that this function is pandas_udf
# and that it's gonna process list of string
@pandas_udf(ArrayType(StringType()))
# function receiving a pd.Series and returning a pd.Series
def entities(list_of_text: pd.Series) -> pd.Series:
global nlp
nlp = load_spacy_model()
docs = nlp.pipe(list_of_text)
# retrieving the str representation of entity label
# as we are limited in the types of obj
# we can return from a panda_udf
# we couldn't return a Span obj for example
ents=[
[ent.label_ for ent in doc.ents]
for doc in docs
]
return pd.Series(ents)
df_new = df.withColumn('entity',entities('value'))
df_new.show()
In my case the model was loaded 4 times, that's better. It's each time a python worker is created to process a batch. So the number will depend how many cores is Spark using but more critically in my case: how much partitioned is our data. So it's yet to be optimum
nlp
object# printing a msg each time we load the model
def load_spacy_model():
print("Loading spacy model...")
return spacy.load("en_core_web_sm")
@pandas_udf(ArrayType(StringType()))
def entities(list_of_text: pd.Series) -> pd.Series:
nlp = boardcasted_nlp.value
docs = nlp.pipe(list_of_text)
# retrieving the str representation of entity label
# as we are limited in the types of obj
# we can return from a panda_udf
# we couldn't return a Span obj for example
ents=[
[ent.label_ for ent in doc.ents]
for doc in docs
]
return pd.Series(ents)
boardcasted_nlp = spark.sparkContext.broadcast(load_spacy_model())
df_new = df.withColumn('entity',entities('value'))
df_new.show()
Now the model is loaded only once then broadcasted to every python worker that is getting spawned.
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, ArrayType
from pyspark.sql.functions import pandas_udf, PandasUDFType
from faker import Faker
import spacy
spark = SparkSession.builder.appName("pyspark_sandbox").getOrCreate()
# creating our set of fake person and company names
names = []
fake = Faker()
for _ in range(8):
names.append(f"{fake.company()} {fake.company_suffix()}")
names.append(fake.name())
df = spark.createDataFrame(names, StringType())
# printing a msg each time we load the model
def load_spacy_model():
print("Loading spacy model...")
return spacy.load("en_core_web_sm")
# decorator indicating that this function is pandas_udf
# and that it's gonna process list of string
@pandas_udf(ArrayType(StringType()))
# function receiving a pd.Series and returning a pd.Series
def entities(list_of_text: pd.Series) -> pd.Series:
# retrieving the shared nlp object
nlp = boardcasted_nlp.value
# batch processing our list of text
docs = nlp.pipe(list_of_text)
# retrieving the str representation of entity label
# as we are limited in the types of obj
# we can return from a panda_udf
# we couldn't return a Span obj for example
ents=[
[ent.label_ for ent in doc.ents]
for doc in docs
]
return pd.Series(ents)
# we load the spacy model and broadcast it
boardcasted_nlp = spark.sparkContext.broadcast(load_spacy_model())
df_new = df.withColumn('entity',entities('value'))
df_new.show(truncate=False)
Result
+----------------------------------+--------------------------------+
|value |entity |
+----------------------------------+--------------------------------+
|Ferguson, Price and Green Ltd |[ORG, ORG, ORG] |
|Cassandra Goodman MD |[PERSON] |
|Solis Ltd LLC |[ORG] |
|Laurie Foster |[PERSON] |
|Lane-Vasquez Group |[ORG] |
|Matthew Wright |[PERSON] |
|Scott, Pugh and Rodriguez and Sons|[PERSON, PERSON, PERSON, PERSON]|
|Tina Cooke |[PERSON] |
|Watkins, Blake and Foster Ltd |[ORG] |
|Charles Reyes |[PERSON] |
|Cooper, Norris and Roberts PLC |[ORG] |
|Michael Tate |[PERSON] |
|Powell, Lawson and Perez and Sons |[PERSON, PERSON, PERSON, PERSON]|
|James Wolf PhD |[PERSON] |
|Greer-Swanson PLC |[ORG] |
|Nicholas Hale |[PERSON] |
+----------------------------------+--------------------------------+
Upvotes: 1
Reputation: 4333
You need to see the input as pd.Series
instead of single value
I was able to get it working by refactoring the code a bit. Notice x.apply
call which is pandas specific and applies function to a pd.Series
.
def entities(x):
global nlp
import spacy
nlp = spacy.load("en_core_web_lg")
ents=[]
doc = nlp(x)
for ent in doc.ents:
if ent.label_ == 'PERSON' or ent.label_ == 'ORG':
ents.append(ent.label_)
return ents
def __get_entities(x):
return x.apply(entities)
get_entities_udf = pandas_udf(lambda x: __get_entities(x), "array<string>", PandasUDFType.SCALAR)
df_new = df.withColumn('entity',get_entities_udf('name'))
df_new.show()
+--------------------+--------+
| name| entity|
+--------------------+--------+
| John Doe|[PERSON]|
| Jane Doe|[PERSON]|
|Microsoft Corpora...| [ORG]|
| Apple Inc.| [ORG]|
+--------------------+--------+
Upvotes: 1