Reputation: 95
Using reshape2
, it's easy to convert a deeply nested list of vectors to a long data.frame which includes information on each value's original list position.
# generate nested list of depth 3 with 2 branches at each level
n_l <- purrr::array_tree(
array(1:2^3, rep_len(2, 3))
)
m_n_l <- reshape2::melt(n_l)
# this provides a df of values where original list position is labelled using
# [n_dimensions] columns each with [n_branches] values. yay! that's what I want
m_n_l
# value L3 L2 L1
# 1 1 1 1 1
# 2 5 2 1 1
# 3 3 1 2 1
# 4 7 2 2 1
# 5 2 1 1 2
# ...
# [reshape2::melt() also handles the case where leaf node vectors have
# arbitrary number of elements]
reshape2::melt(rapply(n_l, function(x) x * 1:sample(1:3, 1)))
reshape2
is now retired, and its users are being encouraged to use tidyr
. However, I can't find a tidyr
way to replicate the above functionality of reshape2::melt()
. pivot_longer()
, hoist()
, and unnest()
seem like the functions replacing melt()
, but they seem to be specialised to the particular cases of data.frames or lists of data.frames.
Can tidyr
do this?
Upvotes: 4
Views: 265
Reputation: 39858
One option using rrapply
could be:
Reduce(rbind, rrapply(n_l, f = function(x, .xpos) c(.xpos, x), how = "flatten"))
[,1] [,2] [,3] [,4]
init 1 1 1 1
1 1 2 5
1 2 1 3
1 2 2 7
2 1 1 2
2 1 2 6
2 2 1 4
2 2 2 8
But if you are looking for a specific tidyverse
option, then one not very compact one could be:
enframe(n_l) %>%
mutate(value = map(value, ~ enframe(., name = "name2"))) %>%
unnest(value) %>%
mutate(value = map(value, ~ enframe(., name = "name3"))) %>%
unnest(value) %>%
mutate(value = unlist(value))
name name2 name3 value
<int> <int> <int> <int>
1 1 1 1 1
2 1 1 2 5
3 1 2 1 3
4 1 2 2 7
5 2 1 1 2
6 2 1 2 6
7 2 2 1 4
8 2 2 2 8
Upvotes: 4