Talha Anwar
Talha Anwar

Reputation: 2949

How to find cosine similarity of one vector vs matrix

I have a TF-IDF matrix of shape (149,1001). What is want is to compute the cosine similarity of last columns, with all columns

Here is what I did

from numpy import dot
from numpy.linalg import norm
for i in range(mat.shape[1]-1):
    cos_sim = dot(mat[:,i], mat[:,-1])/(norm(mat[:,i])*norm(mat[:,-1]))
    cos_sim

But this loop is making it slow. So, is there any efficient way? I want to do with numpy only

Upvotes: 6

Views: 6816

Answers (2)

yatu
yatu

Reputation: 88226

There's an sklearn function to compute the cosine similarity between vectors, cosine_similarity. Here's a use case with an example array:

a = np.random.randint(0,10,(5,5))
print(a)
array([[5, 2, 0, 4, 1],
       [4, 2, 8, 2, 4],
       [9, 7, 4, 9, 7],
       [4, 6, 0, 1, 3],
       [1, 1, 2, 5, 0]])

from sklearn.metrics.pairwise import cosine_similarity
cosine_similarity(a[None,:,-1] , a.T[:-1])
# array([[0.94022805, 0.91705665, 0.75592895, 0.79921221, 1.        ]])

Where a[None,-1] is the last column in a, reshaped so that both matrices have equally shaped Mat.shape[1], which is a requirement of the function:

a[None,:,-1]
# array([[1, 4, 7, 3, 0]])

And by transposing, the result will be the cosine_similarity with all other columns.

Check with the solution from the question:

from numpy import dot
from numpy.linalg import norm
cos_sim = []
for i in range(a.shape[1]-1):
    cos_sim.append(dot(a[:,i], a[:,-1])/(norm(a[:,i])*norm(a[:,-1])))

np.allclose(cos_sim, cosine_similarity(a[None,:,-1] , a.T[:-1]))
# True

Upvotes: 2

Divakar
Divakar

Reputation: 221504

Leverage 2D vectorized matrix-multiplication

Here's one with NumPy using matrix-multiplication on 2D data -

p1 = mat[:,-1].dot(mat[:,:-1])
p2 = norm(mat[:,:-1],axis=0)*norm(mat[:,-1])
out1 = p1/p2

Explanation : p1 is the vectorized equivalent of looping of dot(mat[:,i], mat[:,-1]). p2 is of (norm(mat[:,i])*norm(mat[:,-1])).

Sample run for verification -

In [57]: np.random.seed(0)
    ...: mat = np.random.rand(149,1001)

In [58]: out = np.empty(mat.shape[1]-1)
    ...: for i in range(mat.shape[1]-1):
    ...:     out[i] = dot(mat[:,i], mat[:,-1])/(norm(mat[:,i])*norm(mat[:,-1]))

In [59]: p1 = mat[:,-1].dot(mat[:,:-1])
    ...: p2 = norm(mat[:,:-1],axis=0)*norm(mat[:,-1])
    ...: out1 = p1/p2

In [60]: np.allclose(out, out1)
Out[60]: True

Timings -

In [61]: %%timeit
    ...: out = np.empty(mat.shape[1]-1)
    ...: for i in range(mat.shape[1]-1):
    ...:     out[i] = dot(mat[:,i], mat[:,-1])/(norm(mat[:,i])*norm(mat[:,-1]))
18.5 ms ± 977 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [62]: %%timeit   
    ...: p1 = mat[:,-1].dot(mat[:,:-1])
    ...: p2 = norm(mat[:,:-1],axis=0)*norm(mat[:,-1])
    ...: out1 = p1/p2
939 µs ± 29.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

# @yatu's soln
In [89]: a = mat

In [90]: %timeit cosine_similarity(a[None,:,-1] , a.T[:-1])
2.47 ms ± 461 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Further optimize on norm with einsum

Alternatively, we could compute p2 with np.einsum.

So, norm(mat[:,:-1],axis=0) could be replaced by :

np.sqrt(np.einsum('ij,ij->j',mat[:,:-1],mat[:,:-1]))

Hence, giving us a modified p2 :

p2 = np.sqrt(np.einsum('ij,ij->j',mat[:,:-1],mat[:,:-1]))*norm(mat[:,-1])

Timings on same setup as earlier -

In [82]: %%timeit
    ...: p1 = mat[:,-1].dot(mat[:,:-1])
    ...: p2 = np.sqrt(np.einsum('ij,ij->j',mat[:,:-1],mat[:,:-1]))*norm(mat[:,-1])
    ...: out1 = p1/p2
607 µs ± 132 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

30x+ speedup over loopy one!

Upvotes: 6

Related Questions