Reputation: 29
I have a spark dataframe with some columns (col1,col2,col3,col4,col5...till 32) now i have create a function (udf) which takes 2-input parameters and return some float values.
Now i want to create new columns(in increasing order like col33,col32,col33,col34..) using above function with one parameter increasing and other parameter is constant
def fun(col1,col2):
if true:
do someting
else:
do someting
I have converted this function to udf
udf_func = udf(fun,Floatype())
Now I want to use this function to create new columns in dataframe how to do that?
I tried
for i in range(1,5):
BS.withColumns("some_name with increasing number like abc_1,abc_2",udf_func(col1<this should be col1,col2..till 4>,col6<this is fixed>
How to achieve this in PySpark?
Upvotes: 0
Views: 3372
Reputation: 1035
You can only create one column at a time using withColumn
, so we'll have to call it several times.
# We set up the problem
columns = ["col1", "col2", "col3"]
data = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]
rdd = spark.sparkContext.parallelize(data)
df = rdd.toDF(columns)
df.show()
#+----+----+----+
#|col1|col2|col3|
#+----+----+----+
#| 1| 2| 3|
#| 4| 5| 6|
#| 7| 8| 9|
#+----+----+----+
Since your condition is based an if-else condition, you can do the logic within each iteration using when
and otherwise
. Since I don't know your use case, I check for a trivial condition that if colX
is even, we add it to col3, if odd, we subtract.
We create a new column each iteration based on the number at the end of the column name, plus the number of columns (in our case 3), to generate 4, 5, 6.
# You'll need a function to extract the number at the end of the column name
import re
def get_trailing_number(s):
m = re.search(r'\d+$', s)
return int(m.group()) if m else None
from pyspark.sql.functions import col, when
from pyspark.sql.types import FloatType
rich_df = df
for i in df.columns:
rich_df = rich_df.withColumn(f'col{get_trailing_number(i) + 3}', \
when(col(i) % 2 == 0, col(i) + col("col3"))\
.otherwise(col(i) - col("col3")).cast(FloatType()))
rich_df.show()
#+----+----+----+----+----+----+
#|col1|col2|col3|col4|col5|col6|
#+----+----+----+----+----+----+
#| 1| 2| 3|-2.0| 5.0| 0.0|
#| 4| 5| 6|10.0|-1.0|12.0|
#| 7| 8| 9|-2.0|17.0| 0.0|
#+----+----+----+----+----+----+
Here's a UDF version of the function
def func(col, constant):
if (col % 2 == 0):
return float(col + constant)
else:
return float(col - constant)
func_udf = udf(lambda col, constant: func(col, constant), FloatType())
rich_df = df
for i in df.columns:
rich_df = rich_df.withColumn(f'col{get_trailing_number(i) + 3}', \
func_udf(col(i), col("col3")))
rich_df.show()
#+----+----+----+----+----+----+
#|col1|col2|col3|col4|col5|col6|
#+----+----+----+----+----+----+
#| 1| 2| 3|-2.0| 5.0| 0.0|
#| 4| 5| 6|10.0|-1.0|12.0|
#| 7| 8| 9|-2.0|17.0| 0.0|
#+----+----+----+----+----+----+
It's hard to say more without understanding what you're trying to do.
Upvotes: 0