Reputation: 253
I need to parse this data so that each value in the data parsing column is deposited in its own column.
userid data_to_parse
0 54f3ad9a29ada "value":"N;U;A7;W"}]
1 54f69f2de6aec "value":"N;U;I6;W"}]
2 54f650f004474 "value":"Y;U;A7;W"}]
3 54f52e8872227 "value":"N;U;I1;W"}]
4 54f64d3075b72 "value":"Y;U;A7;W"}]
So for example, the four additional columns for the first entry would have values of “N”, “U”, “A7”, and “W”. I first attempted to split based upon index like so:
parsing_df['value_one'] = parsing_df['data_to_parse'].str[9:10]
parsing_df['value_two'] = parsing_df['data_to_parse'].str[11:12]
parsing_df['value_three'] = parsing_df['data_to_parse'].str[13:15]
parsing_df['value_four'] = parsing_df['data_to_parse'].str[16:17]
This worked really well except that there are a few that are different lengths like 937 and 938.
935 54f45edd13582 "value":"N;U;A7;W"}] N U A7 W
936 54f4d55080113 "value":"N;C;A7;L"}] N C A7 L
937 54f534614d44b "value":"N;U;U;W"}] N U U; "
938 54f383ee53069 "value":"N;U;U;W"}] N U U; "
939 54f40656a4be4 "value":"Y;U;A1;W"}] Y U A1 W
940 54f5d4e063d6a "value":"N;U;A4;W"}] N U A4 W
Does anyone have any solutions that doesn't utilize hard-coded positions?
Thanks for the help!
Upvotes: 1
Views: 196
Reputation: 24938
A relatively simple way to approach the problem:
txt = """54f45edd13582 "value":"N;U;A7;W"}]
54f4d55080113 "value":"N;C;A7;L"}]
54f534614d44b "value":"N;U;U;W"}]
54f383ee53069 "value":"N;U;U;W"}]
54f40656a4be4 "value":"Y;U;A1;W"}]
54f5d4e063d6a "value":"N;U;A4;W"}]
"""
import pandas as pd
txt = txt.replace('}','').replace(']','').replace('"','') #first, clean up the data
#then, collect your data (it may be possible to do it w/ list comprehension, but I prefer this):
rows = []
for l in [t.split('\tvalue:') for t in txt.splitlines()]:
#depending on your actual data, you may have to split by "\nvalue" or " value" or whatever
row = l[1].split(';')
row.insert(0,l[0])
rows.append(row)
#define your columns
columns = ['userid','value_one','value_two','value_three','value_four']
#finally, create your dataframe:
pd.DataFrame(rows,columns=columns)
Output (pardon the formatting):
userid value_one value_two value_three value_four
0 54f45edd13582 N U A7 W
1 54f4d55080113 N C A7 L
2 54f534614d44b N U U W
3 54f383ee53069 N U U W
4 54f40656a4be4 Y U A1 W
5 54f5d4e063d6a N U A4 W
Upvotes: 1
Reputation: 2203
str.split(':')
E.g.
chars = parsing_df['data_to_parse']split(':')
parsing_df['value_one'] = chars[0]
...
for i, char in enumerate(parsing_df['data_to_parse']split(':')):
pass
# use i to get the column and then set it to char
Upvotes: 0