Reputation: 135
Sorry, I should delete the old question, and create the new one. I have a dataframe with two columns. The df looks as follows:
Word Tag
0 Asam O
1 instruksi O
2 - O
3 instruksi X
4 bahasa Y
5 Instruksi P
6 - O
7 instruksi O
8 sebuah Q
9 satuan K
10 - L
11 satuan O
12 meja W
13 Tiap Q
14 - O
15 tiap O
16 karakter P
17 - O
18 ke O
19 - O
20 karakter O
and I'd like to merge some rows which contain dash -
to one row. so the output should be the following:
Word Tag
0 Asam O
1 instruksi-instruksi O
2 bahasa Y
3 Instruksi-instruksi P
4 sebuah Q
5 satuan-satuan K
6 meja W
7 Tiap-tiap Q
8 karakter-ke-karakter P
Any ideas? Thanks in advance. I have tried the answer from Jacob K, it works, then I found in my dataset, there are more than one -
row in between. I have put the expected output, like index number 8
Solution from Jacob K:
# Import packages
import pandas as pd
import numpy as np
# Get 'Word' and 'Tag' columns as numpy arrays (for easy indexing)
words = df.Word.to_numpy()
tags = df.Tag.to_numpy()
# Create empty lists for new colums in output dataframe
newWords = []
newTags = []
# Use while (rather than for loop) since index i can change dynamically
i = 0 # To not cause any issues with i-1 index
while (i < words.shape[0] - 1):
if (words[i] == "-"):
# Concatenate the strings above and below the "-"
newWords.append(words[i-1] + "-" + words[i+1])
newTags.append(tags[i-1])
i += 2 # Don't repeat any concatenated values
else:
if (words[i+1] != "-"):
# If there is no "-" next, append the regular word and tag values
newWords.append(words[i])
newTags.append(tags[i])
i += 1 # Increment normally
# Create output dataframe output_df
d2 = {'Word': newWords, 'Tag': newTags}
output_df = pd.DataFrame(data=d2)
Upvotes: 1
Views: 177
Reputation: 30920
My approach with GroupBy.agg
:
#df['Word'] = df['Word'].str.replace(' ', '') #if necessary
blocks = df['Word'].shift().ne('-').mul(df['Word'].ne('-')).cumsum()
new_df = df.groupby(blocks, as_index=False).agg({'Word' : ''.join, 'Tag' : 'first'})
print(new_df)
Output
Word Tag
0 Asam O
1 instruksi-instruksi O
2 bahasa Y
3 Instruksi-instruksi P
4 sebuah Q
5 satuan-satuan K
6 meja W
7 Tiap-tiap Q
8 karakter-ke-karakter P
Blocks (Detail)
print(blocks)
0 1
1 2
2 2
3 2
4 3
5 4
6 4
7 4
8 5
9 6
10 6
11 6
12 7
13 8
14 8
15 8
16 9
17 9
18 9
19 9
20 9
Name: Word, dtype: int64
Upvotes: 1
Reputation: 6564
This is a loop version:
import pandas as pd
# import data
DF = pd.read_csv("table.csv")
# creates a new DF
newDF = pd.DataFrame()
# iterate through rows
for i in range(len(DF)-1):
# prepare prev row index (?dealing with private instance of first row)
prev = i-1
if (prev < 0):
prev = 0
# copy column if the row is not '-' and the next row is not '-'
if (DF.loc[i+1, 'Word'] != '-'):
if (DF.loc[i, 'Word'] != '-' and DF.loc[prev, 'Word'] != '-'):
newDF = newDF.append(DF.loc[i, :])
# units the three rows if the middle one is '-'
else:
row = {'Tag': [DF.loc[i, 'Tag']], 'Word': [DF.loc[i, 'Word']+DF.loc[i+1, 'Word']+DF.loc[i+2, 'Word']]}
newDF = newDF.append(pd.DataFrame(row))
Upvotes: 0