Suho Cho
Suho Cho

Reputation: 585

Convolution - Deconvolution for even and odd size

I have two different size tensors to put in the network.

C = nn.Conv1d(1, 1, kernel_size=1, stride=2)
TC = nn.ConvTranspose1d(1, 1, kernel_size=1, stride=2)

a = torch.rand(1, 1, 100)
b = torch.rand(1, 1, 101)

a_out, b_out = TC(C(a)), TC(C(b))

The results are

a_out = torch.size([1, 1, 99]) # What I want is [1, 1, 100]
b_out = torch.size([1, 1, 101])

Is there any method to handle this problem?
I need your help.
Thanks

Upvotes: 2

Views: 923

Answers (1)

Mohsin hasan
Mohsin hasan

Reputation: 837

It is expected behaviour as per documentation. May be padding can be used when even input length is detected to get same length as input.

Something like this

class PadEven(nn.Module):
    def __init__(self, conv, deconv, pad_value=0, padding=(0, 1)):
        super().__init__()
        self.conv = conv
        self.deconv = deconv
        self.pad = nn.ConstantPad1d(padding=padding, value=pad_value)

    def forward(self, x):
        nd = x.size(-1)
        x = self.deconv(self.conv(x))
        if nd % 2 == 0:
            x = self.pad(x)
        return x


C = nn.Conv1d(1, 1, kernel_size=1, stride=2)
TC = nn.ConvTranspose1d(1, 1, kernel_size=1, stride=2)
P = PadEven(C, TC)

a = torch.rand(1, 1, 100)
b = torch.rand(1, 1, 101)

a_out, b_out = P(a), P(b)

Upvotes: 2

Related Questions