Reputation: 441
I have a csv file with following format
x1,y1,x2,y2,x3,y3
1,1,2,2,6.5,7.5
2,2,-1,-1,,
,,-2,-3,,
,,-5,-5,,
I want to plot columns (x1,y1)
, (x2,y2)
and (x3,y3)
, for example,
rd1 = some_csv_reader('filename.csv')
matplotlib.pyplot.plot(rd1[:,0],rd1[:,1],rd1[:,2],rd1[:,3])
I tried using pandas.read_csv()
but it puts nan
for empty entries. pandas.fwf()
doesn't separate out columns. I would like to exclude any empty positions in the array during reading itself instead of using something like https://stackoverflow.com/a/11453235/11638153. How can I do that?
Upvotes: 0
Views: 291
Reputation: 62403
list
of tuples
[Index(['x1', 'y1'], dtype='object'), Index(['x2', 'y2'], dtype='object'), Index(['x3', 'y3'], dtype='object')]
import pandas as pd
import matplotlib.pyplot as plt
# read the csv
df = pd.read_csv('test.csv')
# select ever two columns and plot them
N = 2 # number of consecutive columns to combine
for d in [df.columns[n:n+N] for n in range(0, len(df.columns), N)]:
x, y = d
plt.scatter(x, y, data=df, label=y)
plt.legend()
markers = ['o', '*', '+']
N = 2
for i, d in enumerate([df.columns[n:n+N] for n in range(0, len(df.columns), N)]):
x, y = d
plt.plot(x, y, '', marker=markers[i], data=df, label=y)
plt.legend()
x
and y
into a single group# select each group of two columns and append the dataframe to the list
df_list = list()
N = 2
for d in [df.columns[n:n+N] for n in range(0, len(df.columns), N)]:
d = df[d]
d.columns = ['x', 'y'] # rename columns
df_list.append(d)
# concat the list of dataframes
dfc = pd.concat(df_list)
# clean the dataframe
dfc = dfc.dropna().drop_duplicates().sort_values('x').reset_index(drop=True)
# display(dfc)
x y
0 -5.0 -5.0
1 -2.0 -3.0
2 -1.0 -1.0
3 1.0 1.0
4 2.0 2.0
5 6.5 7.5
# plot
plt.plot('x', 'y', '', data=dfc)
Upvotes: 1