Omkar Salokhe
Omkar Salokhe

Reputation: 73

How can I manipulate python list and convert it to pandas dataframe?

I want to create a pandas dataframe. I have the following data list received from a program:

rawdatalist = [
        {
            'Project_Name':'App1',
            'Run Id':'25',
            'cpu':[{'Server1':(21.62,65.16)},{'Server2':(18.0,60.43)}]
        },
        {
            'Project_Name':'App1',
            'Run Id':'24',
            'cpu':[{'Server1':(17.91, 57.81)},{'Server2':(21.33, 61.43)},{'Server3':(2.96, 6.59)}]
        },
        {
            'Project_Name':'App2',
            'Run Id':'25',
            'cpu':[{'Server1':(17.01, 41.28)},{'Server2':(23.56, 68.13)}]
        },
        {
            'Project_Name':'App2',
            'Run Id':'24',
            'cpu':[{'Server1':(22.23, 45.47)},{'Server2':(18.65, 48.95)},{'Server3':(1.62, 2.86)},{'Server4':(1.59, 4.19)}]
        }
]

Desired Output:

1st dataframe with first values of dictionary

cpu         run id 25   run id 24   run id 25   run id 24
Server1     21.62       17.91       17.01       22.23
Server2     18.0        21.33       23.56       18.65
Server3     None        2.96        None        1.62        
Server4     None        None        None        1.59

2nd dataframe with second values of dictionary

cpu         run id 25   run id 24   run id 25   run id 24
Server1     65.16       57.81       41.28       45.47
Server2     60.43       61.43       68.13       48.95
Server3     None        6.59        None        2.86        
Server4     None        None        None        4.19

Upvotes: 1

Views: 115

Answers (1)

Michael Chatiskatzi
Michael Chatiskatzi

Reputation: 245

I think there is certainly an easier way to solve the problem and I am looking forward to further answers. Until then, my approach:

import pandas as pd
from collections import ChainMap

# store name of the keys
key_name = 'Project_Name'
key_id = 'Run Id'
key_cpu = 'cpu'

# store all possible names and project ids
names = set()
run_ids = set()
for data in rawdatalist:
    names.add(data.get(key_name))
    run_ids.add(data.get(key_id))

# create multi index
index = pd.MultiIndex.from_product([names, run_ids], names=[key_name, key_id])

# initialize both data frames
first_df = pd.DataFrame(index=index)
second_df = pd.DataFrame(index=index)

for data in rawdatalist:
    # store the value for each key
    project_name = data[key_name]
    run_id = data[key_id]
    cpus = data[key_cpu]

    # merge the list of dicts to one
    row = dict(ChainMap(*cpus))
    
    keys = list(row.keys())
    values = list(row.values())

    # store the first part of tuple and set in first data frame
    first_value = [x[0] for x in values]
    first_df.loc[(project_name, run_id), keys] = first_value

    # store the second part of tuple and set in second data frame
    second_value = [x[1] for x in values]
    second_df.loc[(project_name, run_id), keys] = second_value

# transpose
first_df = first_df.T
second_df = second_df.T

Output:

Project_Name   App1          App2       
Run Id           25     24     25     24
Server2       18.00  21.33  23.56  18.65
Server1       21.62  17.91  17.01  22.23
Server3         NaN   2.96    NaN   1.62
Server4         NaN    NaN    NaN   1.59

Project_Name   App1          App2       
Run Id           25     24     25     24
Server2       60.43  61.43  68.13  48.95
Server1       65.16  57.81  41.28  45.47
Server3         NaN   6.59    NaN   2.86
Server4         NaN    NaN    NaN   4.19

Upvotes: 1

Related Questions