Reputation: 159
I have a data frame as below
+----+-----------------------------+
|id | att |
+----+-----------------------------+
| 25 | {"State":"abc","City":"xyz"}|
| 26 | null |
| 27 | {"State":"pqr"} |
+----+-----------------------------+
I want a dataframe with columns id and city if the att column has city attribute else null
+----+------+
|id | City |
+----+------+
| 25 | xyz |
| 26 | null |
| 27 | null |
+----+------+
Language : Scala
Upvotes: 1
Views: 53
Reputation: 7336
You can use from_json to parse and convert your json data to Map. Then access the map item using one of:
map("map_key")
import org.apache.spark.sql.functions.from_json
import org.apache.spark.sql.types.{MapType, StringType}
import sparkSession.implicits._
val df = Seq(
(25, """{"State":"abc","City":"xyz"}"""),
(26, null),
(27, """{"State":"pqr"}""")
).toDF("id", "att")
val schema = MapType(StringType, StringType)
df.select($"id", from_json($"att", schema).getItem("City").as("City"))
//or df.select($"id", from_json($"att", schema)("City").as("City"))
//or df.select($"id", element_at(from_json($"att", schema), "City").as("City"))
// +---+----+
// | id|City|
// +---+----+
// | 25| xyz|
// | 26|null|
// | 27|null|
// +---+----+
Upvotes: 2