Reputation: 2035
#include <iostream>
#include <memory>
class test
{
private:
int x , y;
public:
test(int a , int b):x(a),y(b){}
void fun()
{
std::cout<< x<<" "<<y<<" "<<std::endl;
}
};
void show(std::auto_ptr<test> t1)
{
t1->fun();
}
int main()
{
show(new test(3,4));
}
I am getting a compilation error , please tell me what's wrong in this code?Thanks in advance.
Upvotes: 2
Views: 841
Reputation: 264411
James explained how to resolve the problem.
But the reason auto_ptr was designed so that you can not do this:
show(new test(3,4));
Is because this is a bad idea.
Even this (if it were allowed):
show(std::auto_ptr<test>(new test(3,4)));
Would be a bad idea.
So you ask why.
Well in the normal situation not a big deal.
Bu what happens when you have a function that takes more than one parameter.
show2(std::auto_ptr<test>(new test(3,4)), SomeObject());
Now the standard gurantees that all parameters will be fully evaluated before the call (even the construction of the auto_ptr). But it does not guarantee the evaluation order nor that the evaluation will not be interleaved.
Thus it is possible for this evaluation:
// Phsedu code for parameter evaluation
test* tmp1 = new test(3,4);
SomeObject const& tmp2 = SomeObject();
std::auto_ptr<test> const& tmp3(tmp1);
call(tmp3, tmp1)
This order is bad. Because if the constructor of SomeObject throws an exception you will leak tmp1 as it has not yet been assigned to the std::auto_ptr.
This is why we auto_ptr was designed so that you have to give it a named variable.
std::auto_ptr<test> tmp3(new test(3,4));
SomeObject tmp1;
call(tmp3, tmp1)
Now if SomObject constructor throws the test object will be tidied up.
Upvotes: 0
Reputation: 355069
Whenever you dynamically allocate an object, you should create a named smart pointer that immediately takes ownership of the object, then use that named smart pointer. For example,
std::auto_ptr<test> ptr(new test(3, 4));
show(ptr);
You cannot pass new test(3, 4)
directly to the function because std::auto_ptr
objects must be explicitly constructed; it would be quite unexpected if a smart pointer took ownership of an object implicitly.
That said, this is rather unusual anyway because when you call show()
, the auto_ptr
is copied and when auto_ptr
is "copied," the original loses ownership and the copy gains ownership (so, after show()
is called, you will find that ptr
no longer has ownership of the object.
Upvotes: 3