Reputation: 7644
i have a dataframe:
column1
19:08:22
ABCD
19:08:40
WXYZ
AAAA
19:09:02
XXXX
ZZZZ
19:09:49
ABCD
I want to keep only those rows which has text value in two consecutive rows after a row containing time(dtype of this is also string).
I'm looking for this output:
column1
19:08:40
WXYZ
AAAA
19:09:02
XXXX
ZZZZ
Or in a better way:
column1 text1 text2
19:08:40 WXYZ AAAA
19:09:02 XXXX ZZZZ
I'm not sure how to approach this problem,
I thought of using .shift(2) to compare the rows but it isn't working. Also thought of running a iterative loop such as:
for index,rows in df.iterrows():
current_row = rows
###Check for alternate row, if this contains time value remove them.
But this isn't a right way of attempting this problem. Any help or directions is appreciated.
Upvotes: 0
Views: 230
Reputation: 38415
You can combine the conditions and reconstruct a DataFrame,
cond1 = (df['column1'].str.contains('\d+')) & (df['column1'].shift(-1).str.contains('[A-Za-z]+')) & (df['column1'].shift(-2).str.contains('[A-Za-z]+')).fillna(False)
column1_idx = df[cond1].index
text1_idx = df[cond1].index+1
text2_idx = df[cond1].index+2
pd.DataFrame({'column1':df.iloc[column1_idx,0].reset_index(drop = True), 'text1':df.iloc[text1_idx,0].reset_index(drop = True),'text2':df.iloc[text2_idx,0].reset_index(drop = True)})
df[cond1]
column1 text1 text2
0 19:08:40 WXYZ AAAA
1 19:09:02 XXXX ZZZZ
Upvotes: 2
Reputation: 153500
Try:
grp = df['column1'].str.match('\d{2}:\d{2}:\d{2}').cumsum()
m = df.groupby(grp)['column1'].transform('count') > 2
df.loc[m]
Output:
column1
2 19:08:40
3 WXYZ
4 AAAA
5 19:09:02
6 XXXX
7 ZZZZ
Details:
df['grp'] = df['column1'].str.match('\d{2}:\d{2}:\d{2}').cumsum()
m = df.groupby('grp')['column1'].transform('count') > 2
df_out = df.loc[m].copy()
df_out['time'] = df_out['column1'].str.extract('(\d{2}:\d{2}:\d{2})').ffill()
df_out = df_out.query('column1 != time')
df_out.set_index(['time', df_out.groupby('time').cumcount()+1])['column1'].unstack().add_prefix('text')
Output:
text1 text2
time
19:08:40 WXYZ AAAA
19:09:02 XXXX ZZZZ
Upvotes: 2