Reputation: 1539
I have a 25 million row df that has a column of movie genres separated by a '|' character:
userId movieId rating timestamp title genres
0 1 296 5.0 1147880044 Pulp Fiction (1994) Comedy|Crime|Drama|Thriller
1 3 296 5.0 1439474476 Pulp Fiction (1994) Comedy|Crime|Drama|Thriller
2 4 296 4.0 1573938898 Pulp Fiction (1994) Comedy|Crime|Drama|Thriller
3 5 296 4.0 830786155 Pulp Fiction (1994) Comedy|Crime|Drama|Thriller
4 7 296 4.0 835444730 Pulp Fiction (1994) Comedy|Crime|Drama|Thriller
I want to get the mean rating by unique genre.
I can extract all of the unique genres with this:
genres = pd.unique(df2['genres'].str.split('|', expand=True).stack())
Which yields:
['Adventure' 'Animation' 'Children' 'Comedy' 'Fantasy' 'Romance' 'Drama'
'Action' 'Crime' 'Thriller' 'Horror' 'Mystery' 'Sci-Fi' 'IMAX'
'Documentary' 'War' 'Musical' 'Western' 'Film-Noir' '(no genres listed)']
I can isolate rows containing a specific genre with (setting genre equal to a valid genre):
result[result['genres'].str.contains(genre)]
I found something close: pandas: Group by splitting string value in all rows (a column) and aggregation function
but I can't seem to get the syntax to groupby each individual genre so I can get the mean rating per genre.
Upvotes: 1
Views: 238
Reputation: 42916
Using DataFrame.assign
, Series.str.split
, DataFrame.explode
and GroupBy.mean
:
dfg = (
df.assign(genres=df["genres"].str.split("|"))
.explode("genres")
.groupby("genres", as_index=False)["rating"].mean()
)
genres rating
0 Comedy 4.4
1 Crime 4.4
2 Drama 4.4
3 Thriller 4.4
Upvotes: 2