Reputation: 711
I would like to applicate the function bellow, which is a responsible to augment each image and transform it :
def color_distortion(image, s=1.0):
# image is a tensor with value range in [0, 1].
# s is the strength of color distortion.
def color_jitter(x):
# one can also shuffle the order of following augmentations
# each time they are applied.
x = tf.image.random_brightness(x, max_delta=0.8 * s)
x = tf.image.random_contrast(x, lower=1 - 0.8 * s, upper=1 + 0.8 * s)
x = tf.image.random_saturation(x, lower=1 - 0.8 * s, upper=1 + 0.8 * s)
x = tf.image.random_hue(x, max_delta=0.2 * s)
x = tf.clip_by_value(x, 0, 1)
return x
def color_drop(x):
x = tf.image.rgb_to_grayscale(x)
x = tf.tile(x, [1, 1, 3])
return x
rand_ = tf.random.uniform(shape=(), minval=0, maxval=1)
# randomly apply transformation with probability p.
if rand_ < 0.8:
image = color_jitter(image)
rand_ = tf.random.uniform(shape=(), minval=0, maxval=1)
if rand_ < 0.2:
image = color_drop(image)
return image
def distort_simclr(image):
image = tf.cast(image, tf.float32)
v1 = color_distortion(image / 255.)
v2 = color_distortion(image / 255.)
return v1, v2
on my dataset imported like bellow
training_set = tf.data.Dataset.from_generator(path, output_types=(tf.float32, tf.float32), output_shapes = ([2,224,224,3],[2,2]))
So I write this :
training_set = training_set.map(distort_simclr, num_parallel_calls=tf.data.experimental.AUTOTUNE)
I find this:
tf__distort_simclr() takes 1 positional argument but 2 were given
Here is an example of my dataset :
img_gen = tf.keras.preprocessing.image.ImageDataGenerator()
gen = img_gen.flow_from_directory('/train/',(224, 224),'rgb', batch_size = 2)
training_set = tf.data.Dataset.from_generator(lambda : gen, output_types=(tf.float32, tf.float32), output_shapes = ([2,224,224,3],[2,2]))
Upvotes: 1
Views: 9212
Reputation:
You are getting this error because your training_set
has 2 elements but you are passing just one element to function distort_simclr
.
Below is a simple code to reproduce your error -
Error code -
import itertools
import tensorflow as tf
def gen():
for i in itertools.count(1):
yield (i, [1] * i)
dataset = tf.data.Dataset.from_generator(
gen,
(tf.int64, tf.int64),
(tf.TensorShape([]), tf.TensorShape([None])))
print(dataset)
def doNothing(i):
return i
dataset = dataset.map(doNothing)
list(dataset.take(3).as_numpy_iterator())
Output -
<FlatMapDataset shapes: ((), (None,)), types: (tf.int64, tf.int64)>
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-24-27a58aace75c> in <module>()
15 return i
16
---> 17 dataset = dataset.map(doNothing)
18
19 list(dataset.take(3).as_numpy_iterator())
10 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
256 except Exception as e: # pylint:disable=broad-except
257 if hasattr(e, 'ag_error_metadata'):
--> 258 raise e.ag_error_metadata.to_exception(e)
259 else:
260 raise
TypeError: in user code:
TypeError: tf__doNothing() takes 1 positional argument but 2 were given
To fix the error pass both the elements to the function.
Fixed Code -
import itertools
import tensorflow as tf
def gen():
for i in itertools.count(1):
yield (i, [1] * i)
dataset = tf.data.Dataset.from_generator(
gen,
(tf.int64, tf.int64),
(tf.TensorShape([]), tf.TensorShape([None])))
print(dataset)
def doNothing(i,j):
return i,j
dataset = dataset.map(doNothing)
list(dataset.take(3).as_numpy_iterator())
Output -
<FlatMapDataset shapes: ((), (None,)), types: (tf.int64, tf.int64)>
[(1, array([1])), (2, array([1, 1])), (3, array([1, 1, 1]))]
Upvotes: 2