Reputation: 95
I have the following data frame:
Hotel_id Month_Year Chef_Id Chef_is_masterchef Transition
2400188 February-2018 4597566 1 0
2400188 March-2018 4597566 1 0
2400188 April-2018 4597566 1 0
2400188 May-2018 4597566 1 0
2400188 June-2018 4597566 1 0
2400188 July-2018 4597566 1 0
2400188 August-2018 4597566 1 0
2400188 September-2018 4597566 0 1
2400188 October-2018 4597566 0 0
2400188 November-2018 4597566 0 0
2400188 December-2018 4597566 0 0
2400188 January-2019 4597566 0 0
2400188 February-2019 4597566 0 0
2400188 March-2019 4597566 0 0
2400188 April-2019 4597566 0 0
2400188 May-2019 4597566 0 0
2400614 May-2015 2297544 0 0
2400614 June-2015 2297544 0 0
2400614 July-2015 2297544 0 0
2400614 August-2015 2297544 0 0
2400614 September-2015 2297544 0 0
2400614 October-2015 2297544 0 0
2400614 November-2015 2297544 0 0
2400614 December-2015 2297544 0 0
2400614 January-2016 2297544 1 1
2400614 February-2016 2297544 1 0
2400614 March-2016 2297544 1 0
3400624 May-2016 2597531 0 0
3400624 June-2016 2597531 0 0
3400624 July-2016 2597531 0 0
3400624 August-2016 2597531 1 1
2400133 February-2016 4597531 0 0
2400133 March-2016 4597531 0 0
2400133 April-2016 4597531 0 0
2400133 May-2016 4597531 0 0
2400133 June-2016 4597531 0 0
2400133 July-2016 4597531 0 0
2400133 August-2016 4597531 1 1
2400133 September-2016 4597531 1 0
2400133 October-2016 4597531 1 0
2400133 November-2016 4597531 1 0
2400133 December-2016 4597531 1 0
2400133 January-2017 4597531 1 0
2400133 February-2017 4597531 1 0
2400133 March-2017 4597531 1 0
2400133 April-2017 4597531 1 0
2400133 May-2017 4597531 1 0
When the transition takes place from 0 to 1 or 1 to 0 in the Chef_is_Masterchef column, this transition is indicated in the Transition column as 1.
Actually, I thought of creating another column (named as "Var") where the values will be filled as mentioned below for the original data frame,
Expected data frame:
Hotel_id Month_Year Chef_Id Chef_is_masterchef Transition Var
2400188 February-2018 4597566 1 0 -7
2400188 March-2018 4597566 1 0 -6
2400188 April-2018 4597566 1 0 -5
2400188 May-2018 4597566 1 0 -4
2400188 June-2018 4597566 1 0 -3
2400188 July-2018 4597566 1 0 -2
2400188 August-2018 4597566 1 0 -1
2400188 September-2018 4597566 0 1 0
2400188 October-2018 4597566 0 0 1
2400188 November-2018 4597566 0 0 2
2400188 December-2018 4597566 0 0 3
2400188 January-2019 4597566 0 0 4
2400188 February-2019 4597566 0 0 5
2400188 March-2019 4597566 0 0 6
2400188 April-2019 4597566 0 0 7
2400188 May-2019 4597566 0 0 8
2400614 May-2015 2297544 0 0 -8
2400614 June-2015 2297544 0 0 -7
2400614 July-2015 2297544 0 0 -6
2400614 August-2015 2297544 0 0 -5
2400614 September-2015 2297544 0 0 -4
2400614 October-2015 2297544 0 0 -3
2400614 November-2015 2297544 0 0 -2
2400614 December-2015 2297544 0 0 -1
2400614 January-2016 2297544 1 1 0
2400614 February-2016 2297544 1 0 1
2400614 March-2016 2297544 1 0 2
3400624 May-2016 2597531 0 0 -3
3400624 June-2016 2597531 0 0 -2
3400624 July-2016 2597531 0 0 -1
3400624 August-2016 2597531 1 1 0
2400133 February-2016 4597531 0 0 -6
2400133 March-2016 4597531 0 0 -5
2400133 April-2016 4597531 0 0 -4
2400133 May-2016 4597531 0 0 -3
2400133 June-2016 4597531 0 0 -2
2400133 July-2016 4597531 0 0 -1
2400133 August-2016 4597531 1 1 0
2400133 September-2016 4597531 1 0 1
2400133 October-2016 4597531 1 0 2
2400133 November-2016 4597531 1 0 3
2400133 December-2016 4597531 1 0 4
2400133 January-2017 4597531 1 0 5
2400133 February-2017 4597531 1 0 6
2400133 March-2017 4597531 1 0 7
2400133 April-2017 4597531 1 0 8
2400133 May-2017 4597531 1 0 9
If observed, at the point of transition in the Var column I am giving the value as zero and for the rows before and after I am maintaining the corresponding integer values.
But after using the below code I had an issue in the Var column,
s = df['Chef_is_masterchef'].eq(0).groupby(df['Chef_Id']).transform('sum')
df['var'] = df.groupby('Chef_Id').cumcount().sub(s)
Output from the above code:
Hotel_id Month_Year Chef_Id Chef_is_masterchef Transition Var
2400188 February-2018 4597566 1 0 -9
2400188 March-2018 4597566 1 0 -8
2400188 April-2018 4597566 1 0 -7
2400188 May-2018 4597566 1 0 -6
2400188 June-2018 4597566 1 0 -5
2400188 July-2018 4597566 1 0 -4
2400188 August-2018 4597566 1 0 -3
2400188 September-2018 4597566 0 1 -2
2400188 October-2018 4597566 0 0 -1
2400188 November-2018 4597566 0 0 0
2400188 December-2018 4597566 0 0 1
2400188 January-2019 4597566 0 0 2
2400188 February-2019 4597566 0 0 3
2400188 March-2019 4597566 0 0 4
2400188 April-2019 4597566 0 0 5
2400188 May-2019 4597566 0 0 6
2400614 May-2015 2297544 0 0 -8
2400614 June-2015 2297544 0 0 -7
2400614 July-2015 2297544 0 0 -6
2400614 August-2015 2297544 0 0 -5
2400614 September-2015 2297544 0 0 -4
2400614 October-2015 2297544 0 0 -3
2400614 November-2015 2297544 0 0 -2
2400614 December-2015 2297544 0 0 -1
2400614 January-2016 2297544 1 1 0
2400614 February-2016 2297544 1 0 1
2400614 March-2016 2297544 1 0 2
3400624 May-2016 2597531 0 0 -3
3400624 June-2016 2597531 0 0 -2
3400624 July-2016 2597531 0 0 -1
3400624 August-2016 2597531 1 1 0
2400133 February-2016 4597531 0 0 -6
2400133 March-2016 4597531 0 0 -5
2400133 April-2016 4597531 0 0 -4
2400133 May-2016 4597531 0 0 -3
2400133 June-2016 4597531 0 0 -2
2400133 July-2016 4597531 0 0 -1
2400133 August-2016 4597531 1 1 0
2400133 September-2016 4597531 1 0 1
2400133 October-2016 4597531 1 0 2
2400133 November-2016 4597531 1 0 3
2400133 December-2016 4597531 1 0 4
2400133 January-2017 4597531 1 0 5
2400133 February-2017 4597531 1 0 6
2400133 March-2017 4597531 1 0 7
2400133 April-2017 4597531 1 0 8
2400133 May-2017 4597531 1 0 9
If Observed, for the Chef_Id = 4597566 you can see at the point of transition the value is different instead of zero in the Var column.
This creates a problem because, at the point of transition, I have to select rows including up to 3 months before and 2 months after for each id. Also at the point of transition, I have to select rows including up to 6 months before and 5 months after for each id using the below code:
df1 = df[df['var'].between(-3, 2)]
print (df1)
df2 = df[df['var'].between(-6, 5)]
print (df2)
So please let me know the solution.
Thanks in advance!
Upvotes: 0
Views: 278
Reputation: 862691
Use GroupBy.cumcount
for counter per groups and then subtract number of 0
values by compare by 0
and GroupBy.transform
:
s = df['Chef_is_masterchef'].eq(0).groupby(df['Chef_Id']).transform('sum')
df['var'] = df.groupby('Chef_Id').cumcount().sub(s)
print (df)
Hotel_id Month_Year Chef_Id Chef_is_masterchef Transition var
0 2400614 May-2015 2297544 0 0 -8
1 2400614 June-2015 2297544 0 0 -7
2 2400614 July-2015 2297544 0 0 -6
3 2400614 August-2015 2297544 0 0 -5
4 2400614 September-2015 2297544 0 0 -4
5 2400614 October-2015 2297544 0 0 -3
6 2400614 November-2015 2297544 0 0 -2
7 2400614 December-2015 2297544 0 0 -1
8 2400614 January-2016 2297544 1 1 0
9 2400614 February-2016 2297544 1 0 1
10 2400614 March-2016 2297544 1 0 2
11 3400624 May-2016 2597531 0 0 -3
12 3400624 June-2016 2597531 0 0 -2
13 3400624 July-2016 2597531 0 0 -1
14 3400624 August-2016 2597531 1 1 0
15 2400133 February-2016 4597531 0 0 -6
16 2400133 March-2016 4597531 0 0 -5
17 2400133 April-2016 4597531 0 0 -4
18 2400133 May-2016 4597531 0 0 -3
19 2400133 June-2016 4597531 0 0 -2
20 2400133 July-2016 4597531 0 0 -1
21 2400133 August-2016 4597531 1 1 0
22 2400133 September-2016 4597531 1 0 1
23 2400133 October-2016 4597531 1 0 2
24 2400133 November-2016 4597531 1 0 3
25 2400133 December-2016 4597531 1 0 4
26 2400133 January-2017 4597531 1 0 5
27 2400133 February-2017 4597531 1 0 6
28 2400133 March-2017 4597531 1 0 7
29 2400133 April-2017 4597531 1 0 8
30 2400133 May-2017 4597531 1 0 9
Last filter by Series.between
:
df1 = df[df['var'].between(-3, 2)]
print (df1)
df2 = df[df['var'].between(-6, 5)]
print (df2)
Upvotes: 1