Reputation: 3
I'm trying to get the ROC curve of a classifier using SVC and Stratified K-fold, but to every fold the FPR and TPR are set as [0. 1.] and I still cant undestand what is happen here:
Code
import numpy as np
from sklearn.model_selection import StratifiedKFold
import matplotlib.pyplot as plt
tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)
skf = StratifiedKFold(n_splits=5, shuffle=False)
fig, ax = plt.subplots()
i = 0
for train_idx, test_idx in skf.split(dataset, label):
train_data, test_data = dataset[train_idx], dataset[test_idx]
train_label, test_label = label[train_idx], label[test_idx]
svc = SVC(C=0.03125, kernel='rbf',gamma=8 ,probability=True)
svc.fit(train_data, train_label)
score = svc.decision_function(test_data)
predicted = svc.predict(test_data)
fpr, tpr, thresholds = metrics.roc_curve(test_label, score)
roc_auc = metrics.auc(fpr, tpr)
interp_tpr = np.interp(mean_fpr, fpr, tpr)
interp_tpr = np.interp(mean_fpr, fpr, tpr)
interp_tpr[0] = 0.0
tprs.append(interp_tpr)
aucs.append(roc_auc)
ax.plot(fpr, tpr, lw=1, alpha=0.3,
label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc))
i+=1
ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
label='Chance', alpha=.8)
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = metrics.auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
ax.plot(mean_fpr, mean_tpr, color='b',
label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc),
lw=2, alpha=.8)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,
label=r'$\pm$ 1 std. dev.')
ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],
title="Receiver operating characteristic example")
ax.legend(loc="lower right")
plt.show()
RESULT
Please, tell me what is wrong. The accuracy is between 60-65% for each fold
Upvotes: 0
Views: 784
Reputation: 2478
Your AUC = 0.5 and your line is simply just a diagonal, because "mean_fpr" and "mean_tpr" have exactly the same values. So naturally, it will be a diagonal.
You are defining your mean_fpr with:
mean_fpr = np.linspace(0, 1, 100)
which results in
array([0. , 0.01010101, 0.02020202, 0.03030303, 0.04040404,
0.05050505, 0.06060606, 0.07070707, 0.08080808, 0.09090909,
0.1010101 , 0.11111111, 0.12121212, 0.13131313, 0.14141414,
0.15151515, 0.16161616, 0.17171717, 0.18181818, 0.19191919,
0.2020202 , 0.21212121, 0.22222222, 0.23232323, 0.24242424,
0.25252525, 0.26262626, 0.27272727, 0.28282828, 0.29292929,
0.3030303 , 0.31313131, 0.32323232, 0.33333333, 0.34343434,
0.35353535, 0.36363636, 0.37373737, 0.38383838, 0.39393939,
0.4040404 , 0.41414141, 0.42424242, 0.43434343, 0.44444444,
0.45454545, 0.46464646, 0.47474747, 0.48484848, 0.49494949,
0.50505051, 0.51515152, 0.52525253, 0.53535354, 0.54545455,
0.55555556, 0.56565657, 0.57575758, 0.58585859, 0.5959596 ,
0.60606061, 0.61616162, 0.62626263, 0.63636364, 0.64646465,
0.65656566, 0.66666667, 0.67676768, 0.68686869, 0.6969697 ,
0.70707071, 0.71717172, 0.72727273, 0.73737374, 0.74747475,
0.75757576, 0.76767677, 0.77777778, 0.78787879, 0.7979798 ,
0.80808081, 0.81818182, 0.82828283, 0.83838384, 0.84848485,
0.85858586, 0.86868687, 0.87878788, 0.88888889, 0.8989899 ,
0.90909091, 0.91919192, 0.92929293, 0.93939394, 0.94949495,
0.95959596, 0.96969697, 0.97979798, 0.98989899, 1. ])
And then you assign mean_tpr
by taking the mean of tprs with
np.mean(tprs, axis=0)
but tprs
is just an array, which contains the same array as in mean_fpr
, so the mean of that will just be mean_fpr
again, which is why mean_fpr
and mean_tpr
are equal.
And tprs
just contains the array of mean_fpr
over and over, because you add it in your loop as
interp_tpr = np.interp(mean_fpr, fpr, tpr)
And since fpr and tpr are just [0,1] it results in the same values in the interpolation.
So now you should better understand that your ROC curve is just a diagonal, because the x and y values are equal (hence also AUC of 0.5).
Upvotes: 2