Reputation: 1010
Hello below is the pytorch model I am trying to run. But getting error. I have posted the error trace as well. It was running very well unless I added convolution layers. I am still new to deep learning and Pytorch. So I apologize if this is silly question. I am using conv1d so why should conv1d expect 3 dimensional input and it is also getting a 2d input which is also odd.
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(CROP_SIZE*CROP_SIZE*3, 512)
self.conv1d1 = nn.Conv1d(in_channels=512, out_channels=64, kernel_size=1, stride=2)
self.fc2 = nn.Linear(64, 128)
self.conv1d2 = nn.Conv1d(in_channels=128, out_channels=64, kernel_size=1, stride=2)
self.fc3 = nn.Linear(64, 256)
self.conv1d3 = nn.Conv1d(in_channels=256, out_channels=64, kernel_size=1, stride=2)
self.fc4 = nn.Linear(64, 256)
self.fc4 = nn.Linear(256, 128)
self.fc5 = nn.Linear(128, 64)
self.fc6 = nn.Linear(64, 32)
self.fc7 = nn.Linear(32, 64)
self.fc8 = nn.Linear(64, frame['landmark_id'].nunique())
def forward(self, x):
x = F.relu(self.conv1d1(self.fc1(x)))
x = F.relu(self.conv1d2(self.fc2(x)))
x = F.relu(self.conv1d3(self.fc3(x)))
x = F.relu(self.fc4(x))
x = F.relu(self.fc5(x))
x = F.relu(self.fc6(x))
x = F.relu(self.fc7(x))
x = self.fc8(x)
return F.log_softmax(x, dim=1)
net = Net()
import torch.optim as optim
loss_function = nn.CrossEntropyLoss()
net.to(torch.device('cuda:0'))
for epoch in range(3): # 3 full passes over the data
optimizer = optim.Adam(net.parameters(), lr=0.001)
for data in tqdm(train_loader): # `data` is a batch of data
X = data['image'].to(device) # X is the batch of features
y = data['landmarks'].to(device) # y is the batch of targets.
optimizer.zero_grad() # sets gradients to 0 before loss calc. You will do this likely every step.
output = net(X.view(-1,CROP_SIZE*CROP_SIZE*3)) # pass in the reshaped batch
# print(np.argmax(output))
# print(y)
loss = F.nll_loss(output, y) # calc and grab the loss value
loss.backward() # apply this loss backwards thru the network's parameters
optimizer.step() # attempt to optimize weights to account for loss/gradients
print(loss) # print loss. We hope loss (a measure of wrong-ness) declines!
Error trace
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-42-f5ed7999ce57> in <module>
5 y = data['landmarks'].to(device) # y is the batch of targets.
6 optimizer.zero_grad() # sets gradients to 0 before loss calc. You will do this likely every step.
----> 7 output = net(X.view(-1,CROP_SIZE*CROP_SIZE*3)) # pass in the reshaped batch
8 # print(np.argmax(output))
9 # print(y)
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
548 result = self._slow_forward(*input, **kwargs)
549 else:
--> 550 result = self.forward(*input, **kwargs)
551 for hook in self._forward_hooks.values():
552 hook_result = hook(self, input, result)
<ipython-input-37-6d3e34d425a0> in forward(self, x)
16
17 def forward(self, x):
---> 18 x = F.relu(self.conv1d1(self.fc1(x)))
19 x = F.relu(self.conv1d2(self.fc2(x)))
20 x = F.relu(self.conv1d3(self.fc3(x)))
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
548 result = self._slow_forward(*input, **kwargs)
549 else:
--> 550 result = self.forward(*input, **kwargs)
551 for hook in self._forward_hooks.values():
552 hook_result = hook(self, input, result)
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/conv.py in forward(self, input)
210 _single(0), self.dilation, self.groups)
211 return F.conv1d(input, self.weight, self.bias, self.stride,
--> 212 self.padding, self.dilation, self.groups)
213
214
RuntimeError: Expected 3-dimensional input for 3-dimensional weight [64, 512, 1], but got 2-dimensional input of size [4, 512] instead
Upvotes: 2
Views: 12456
Reputation: 1515
Most of the Pytorch functions work on batch data i.e they accept input of size (batch_size, shape)
. @Szymon Maszke already posted answer related to that.
So in your case, you can use unsqueeze and sqeeze functions for adding and removing extra dimensions.
Here's the sample code:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(100, 512)
self.conv1d1 = nn.Conv1d(in_channels=512, out_channels=64, kernel_size=1, stride=2)
self.fc2 = nn.Linear(64, 128)
def forward(self, x):
x = self.fc1(x)
x = x.unsqueeze(dim=2)
x = F.relu(self.conv1d1(x))
x = x.squeeze()
x = self.fc2(x)
return x
net = Net()
bsize = 4
inp = torch.randn((bsize, 100))
out = net(inp)
print(out.shape)
Upvotes: 2
Reputation: 24904
You should learn how convolutions work (e.g. see this answer) and some neural network basics (this tutorial from PyTorch).
Basically, Conv1d
expects inputs of shape [batch, channels, features]
(where features
can be some timesteps and can vary, see example).
nn.Linear
expects shape [batch, features]
as it is fully connected and each input feature is connected to each output feature.
You can verify those shapes by yourself, for torch.nn.Linear
:
import torch
layer = torch.nn.Linear(20, 10)
data = torch.randn(64, 20) # [batch, in_features]
layer(data).shape # [64, 10], [batch, out_features]
For Conv1d
:
layer = torch.nn.Conv1d(in_channels=20, out_channels=10, kernel_size=3, padding=1)
data = torch.randn(64, 20, 15) # [batch, channels, timesteps]
layer(data).shape # [64, 10, 15], [batch, out_features]
layer(torch.randn(32, 20, 25)).shape # [32, 10, 25]
BTW. As you are working with images, you should use torch.nn.Conv
2d
instead.
Upvotes: 2