Reputation: 1643
I'm looking to split up a dataframe for parallel processing in order to speed up the processing time.
What I have so far (broken code):
library(tidyverse)
library(iterators)
library(doParallel)
library(foreach)
data_split <- split(iris, iris$Species)
data_iter <- iter(data_split)
cl <- makeCluster(3)
registerDoParallel(cl)
foreach(
data=data_iter,
i = data_iter,
.combine=dplyr::bind_rows
) %dopar% {
test <- lm(Petal.Length ~ Sepal.Length, i)
test.lm <- broom::augment(test)
return(dplyr::bind_rows(test.lm))
}
stopCluster(cl)
Maybe an lapply within the foreach?
out <- foreach(it = data_iter,
.combine = dplyr::bind_rows,
.multicombine = TRUE,
.noexport = ls()
) %dopar% {
print(str(it, max.level = 1))
out <- lapply(it, function(x) {
test <- lm(Petal.Length ~ Sepal.Length, subset(iris, iris$Species == iris$Species[[x]]))
test.lm <- broom::augment(test)
})
}
print(bind_rows(out))
return(bind_rows(out))
What I'm looking to do:
test1 <- lm(Petal.Length ~ Sepal.Length, subset(iris, iris$Species == iris$Species[[1]]))
test.lm1 <- broom::augment(test1)
test2 <- lm(Petal.Length ~ Sepal.Length, subset(iris, iris$Species == iris$Species[[2]]))
test.lm2 <- broom::augment(test2)
test3 <- lm(Petal.Length ~ Sepal.Length, subset(iris, iris$Species == iris$Species[[3]]))
test.lm3 <- broom::augment(test3)
testdat <- bind_rows(test.lm1,test.lm2,test.lm3)
Upvotes: 2
Views: 843
Reputation: 1643
I found my answer with the furrr
package:
library(furrr)
plan(cluster, workers = 3)
data_split <- split(iris, iris$Species)
testdat <- furrr::future_map_dfr(data_split, function(.data){
test <- lm(Petal.Length ~ Sepal.Length, .data)
broom::augment(test)
})
plan(cluster, workers = 1)
testdat
Upvotes: 1