Reputation: 702
Imagine I have a dataframe like this one below. I would like to create a new column df['b'] with a specific equation that takes the maximum and minimum values of df['a']. The equation should be something like this:
import pandas as pd
df = pd.DataFrame({'a':[0.3, 0.1, 0.7, 0.5, 0.4, 0.3, 0.1, 0.6, 0.8, 0.2, 0.2],
'group':[1, 1, 3, 3, 5, 5, 3, 3, 6, 6, 1]})
equation = (df['a'] - df['a'].min()) / (df['a'].max() - df['a'].min())
Although, these maximum and minimum values should be related to the unique values in df['group']. So, we should get the max and min values for group 1, 3, 5 and 6 and then apply the equation on the related row of df['a'].
I managed to separate these values, but I don't know how to reproduce this idea.
a_max = df.groupby('group')['a'].max()
a_min = df.groupby('group')['a'].min()
The output should look like this:
a group b
0 0.3 1 1
1 0.1 1 0
2 0.7 3 1
3 0.5 3 0.67
4 0.4 5 1
5 0.3 5 0
6 0.1 3 0
7 0.6 3 0.6
8 0.8 6 1
9 0.2 6 0
10 0.2 1 0.5
Upvotes: 1
Views: 151
Reputation: 150745
We can precompute the max/min by group:
groups = df.groupby('group')['a']
amax, amin = groups.transform('max'), groups.transform('min')
df['b'] = (df['a']-amin)/(amax-amin)
Or use a custom function:
df['b'] = df.groupby('group')['a'].apply(lambda x: (x-x.min())/(x.max()-x.min()) )
The first approach is slightly more performant, while the second is shorter in terms of code.
Both would output:
a group b
0 0.3 1 1.000000
1 0.1 1 0.000000
2 0.7 3 1.000000
3 0.5 3 0.666667
4 0.4 5 1.000000
5 0.3 5 0.000000
6 0.1 3 0.000000
7 0.6 3 0.833333
8 0.8 6 1.000000
9 0.2 6 0.000000
10 0.2 1 0.500000
Upvotes: 2