Reputation: 81
I deploying a python + tensorflow + flask application using a fully managed Google Cloud Run Service (1 vCPUs and 4 GB Ram).
System works fine but it is really slow, so I am evaluating ways of making it fast (it needs to run 20-30 times faster than what is doing now)
What would be the best approach?
For now I don't expect to have more than 10 users at a time but I want to be able to scale it up eventually.
Upvotes: 0
Views: 143
Reputation: 1247
You might want to evaluate according to your use case
Per this article, Fully managed Cloud Run is an ideal serverless platform for stateless containerized microservices that don’t require Kubernetes features like namespaces, co-location of containers in pods (sidecars) or node allocation and management.
GKE is a great choice if you are looking for a container orchestration platform that offers advanced scalability and configuration flexibility.
You mentioned you are looking the cheaper/easier method to develop, but this will probably not be as scalable, efficient or manageable, you might want to take a closer look at all cloud compute options in GCP to see what could benefit your use case the most.
You mentioned your use case is CPU intensive, so you might want to leverage the high CPU machine types, these might be used directly by creating a VM, creating an instance group or using them in other services like GKE or App Engine
Upvotes: 1