Reputation: 2273
So I am looking forward to make the scraping of the table that appears in this link.
In order scrape I decided to use selenium.
In my first try what I did was:
driver = webdriver.Chrome(ChromeDriverManager().install())
driver.get(url)
html_source = self.driver.page_source
self.driver.quit()
BeautifulSoup(html_source, "html5lib")
table = soup.find('table', {'class': 'heavy-table ncpulse-fav-table ncpulse-sortable compressed-table'})
df = pd.read_html(str(table), flavor='html5lib', header=0, thousands='.', decimal=',')
However it output the error
'no tables found'
Then I tried to make use of expected_conditions class because as I looked up in SO maybe the "Page Source was pulled out even before the child elements have completely rendered"
Therefore I tried something like this:
driver.get(route)
element_present = expected_conditions.presence_of_element_located(
(By.CLASS_NAME, 'heavy-table ncpulse-fav-table ncpulse-sortable compressed-table'))
WebDriverWait(driver, 20).until(element_present)
html_source = driver.page_source
driver.quit()
However this time it outputs :
selenium.common.exceptions.TimeoutException: Message
Therefore my questions are: How could I obtain the desired output? What am I doing wrong with the use of the expected_conditions
class? What is the issue/front-end-technology behind that makes it such a struggle to scrape the table?
Upvotes: 2
Views: 180
Reputation: 193058
To extract the contents from the table as the <table>
is Angular based element using Selenium and python instead of presence_of_element_located()
you have to induce WebDriverWait for the visibility_of_element_located()
and you can use either of the following Locator Strategies:
Using CSS_SELECTOR
:
print(WebDriverWait(driver, 20).until(EC.visibility_of_element_located((By.CSS_SELECTOR, "table.heavy-table.ncpulse-fav-table.ncpulse-sortable.compressed-table"))).text)
Using XPATH
:
print(WebDriverWait(driver, 20).until(EC.visibility_of_element_located((By.XPATH, "//table[@class='heavy-table ncpulse-fav-table ncpulse-sortable compressed-table']"))).text)
Note : You have to add the following imports :
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
Console Output:
AKTIE +/- +/-% SENESTE ÅTD% BUD UDBUD VOLUMEN OMSÆTNING MARKEDSVÆRDI TID
Abn Amro Bank N.V. -0,32 -4,08% 7,48 -53,90% - - 7,9 mio 59,0 mio - 21:09
Adyen 81,00 5,62% 1523,00 108% - - 954 082 1,5 mia - 21:09
Aegon -0,08 -3,49% 2,16 -45,47% - - 17,4 mio 37,5 mio - 21:05
Ahold Del 0,25 0,98% 25,65 19,74% - - 8,0 mio 204,1 mio - 21:05
Akzo Nobel 0,14 0,16% 85,86 -3,16% - - 1,1 mio 90,6 mio - 21:06
Arcelormittal Sa 0,08 0,66% 11,53 -26,26% - - 11,9 mio 137,3 mio - 21:09
Asm International 0,35 0,29% 119,10 21,23% - - 403 117 48,0 mio - 21:07
Asml Holding 1,50 0,49% 308,45 17,56% - - 2,3 mio 712,7 mio - 21:05
Asr Nederland -0,22 -0,73% 29,76 -4,97% - - 740 781 22,0 mio - 21:05
Dsm Kon 2,25 1,66% 138,20 21,52% - - 680 867 94,1 mio - 21:09
Galapagos -1,45 -1,22% 117,70 -36,89% - - 475 793 56,0 mio - 21:05
Heineken 0,74 0,94% 79,10 -15,50% - - 1,1 mio 88,0 mio - 21:05
Imcd 1,85 1,80% 104,85 36,23% - - 922 391 96,7 mio - 21:05
Ing Groep N.V. -0,19 -2,80% 6,60 -38,24% - - 43,4 mio 286,2 mio - 21:08
Just Eat Takeaway 0,08 0,09% 91,70 11,56% - - 1,1 mio 100,2 mio - 21:09
Kpn Kon -0,03 -1,54% 2,11 -15,04% - - 21,4 mio 45,1 mio - 21:05
Nn Group -0,35 -1,06% 32,80 3,82% - - 2,4 mio 79,6 mio - 21:05
Philips Kon -0,08 -0,20% 39,42 -9,42% - - 5,2 mio 205,9 mio - 21:05
Prosus -1,52 -1,89% 78,74 18,35% - - 15,0 mio 1,2 mia - 21:09
Randstad Nv -0,98 -2,09% 45,93 -15,63% - - 698 496 32,1 mio - 21:05
Relx 0,00 0,03% 19,64 -10,24% - - 1,9 mio 36,6 mio - 21:06
Royal Dutch Shella -0,24 -2,07% 11,45 -54,58% - - 21,1 mio 241,2 mio - 21:07
Unibail-Rodamco-We -3,79 -10,53% 32,20 -75,02% - - 6,6 mio 213,2 mio - 21:07
Unilever -1,04 -2,00% 50,98 2,00% - - 8,2 mio 417,5 mio - 21:08
Wolters Kluwer -0,04 -0,05% 72,88 14,19% - - 803 644 58,6 mio - 21:05
Upvotes: 2
Reputation: 9969
For multiple class names use the farthest right.
element_present = WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.CLASS_NAME, 'compressed-table')))
print(element_present.text)
Outputs
AKTIE +/- +/-% SENESTE ÅTD% VOLUMEN OMSÆTNING MARKEDSVÆRDI
Abn Amro Bank N.V. -0,32 -4,08% 7,48 -53,90% 7,9 mio 59,0 mio -
Adyen 81,00 5,62% 1523,00 108% 954 082 1,5 mia -
Aegon -0,08 -3,49% 2,16 -45,47% 17,4 mio 37,5 mio -
Ahold Del 0,25 0,98% 25,65 19,74% 8,0 mio 204,1 mio -
Akzo Nobel 0,14 0,16% 85,86 -3,16% 1,1 mio 90,6 mio -
Arcelormittal Sa 0,08 0,66% 11,53 -26,26% 11,9 mio 137,3 mio -
To convert to English
options = Options()
prefs = {
"translate_whitelists": {"da":"en"},
"translate":{"enabled":"true"}
}
options.add_experimental_option("prefs", prefs)
driver = webdriver.Chrome(ChromeDriverManager().install(),options=options)
SHARES +/- + / -% MOST RECENT ÅTD% VOLUME TURNOVER MARKET VALUE
Abn Amro Bank NV -0.32 -4.08% 7.48 -53.90% 7.9 million 59.0 million -
Adyen 81.00 5.62% 1523.00 108% 954 082 1.5 billion -
Aegon -0.08 -3.49% 2.16 -45.47% 17.4 million 37.5 million -
Ahold Del 0.25 0.98% 25.65 19.74% 8.0 million 204.1 million -
Akzo Nobel 0.14 0.16% 85.86 -3.16% 1.1 million 90.6 million -
Import
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
Upvotes: 1
Reputation: 33384
To get table info WebDriverWait
() and visibility_of_element_located
() and following css selector
driver.get("https://borsen.dk/investor/kurser/eur-aktier/?filter=aex25")
WebDriverWait(driver,20).until(EC.visibility_of_element_located((By.CSS_SELECTOR,".compressed-table")))
html_source =driver.page_source
driver.quit()
soup=BeautifulSoup(html_source, "html5lib")
table=soup.select_one(".compressed-table")
df = pd.read_html(str(table), flavor='html5lib', header=0, thousands='.', decimal=',')
print(df[0])
Output:
Unnamed: 0 Aktie +/- ... Markedsværdi Sektor Tid
0 NaN Abn Amro Bank N.V. -0.32 ... - NaN 16:39
1 NaN Adyen 81.00 ... - NaN 16:39
2 NaN Aegon -0.08 ... - NaN 16:35
3 NaN Ahold Del 0.25 ... - NaN 16:35
4 NaN Akzo Nobel 0.14 ... - NaN 16:36
5 NaN Arcelormittal Sa 0.08 ... - NaN 16:39
6 NaN Asm International 0.35 ... - NaN 16:37
7 NaN Asml Holding 1.50 ... - NaN 16:35
8 NaN Asr Nederland -0.22 ... - NaN 16:35
9 NaN Dsm Kon 2.25 ... - NaN 16:39
10 NaN Galapagos -1.45 ... - NaN 16:35
11 NaN Heineken 0.74 ... - NaN 16:35
12 NaN Imcd 1.85 ... - NaN 16:35
13 NaN Ing Groep N.V. -0.19 ... - NaN 16:38
14 NaN Just Eat Takeaway 0.08 ... - NaN 16:39
15 NaN Kpn Kon -0.03 ... - NaN 16:35
16 NaN Nn Group -0.35 ... - NaN 16:35
17 NaN Philips Kon -0.08 ... - NaN 16:35
18 NaN Prosus -1.52 ... - NaN 16:39
19 NaN Randstad Nv -0.98 ... - NaN 16:35
20 NaN Relx 0.00 ... - NaN 16:36
21 NaN Royal Dutch Shella -0.24 ... - NaN 16:37
22 NaN Unibail-Rodamco-We -3.79 ... - NaN 16:37
23 NaN Unilever -1.04 ... - NaN 16:38
24 NaN Wolters Kluwer -0.04 ... - NaN 16:35
[25 rows x 13 columns]
You can use find()
as well
driver.get("https://borsen.dk/investor/kurser/eur-aktier/?filter=aex25")
WebDriverWait(driver,20).until(EC.visibility_of_element_located((By.CSS_SELECTOR,".compressed-table")))
html_source =driver.page_source
driver.quit()
soup=BeautifulSoup(html_source, "html5lib")
df=pd.read_html(str(soup.find('table',class_='heavy-table ncpulse-fav-table ncpulse-sortable compressed-table')))[0]
print(df)
Upvotes: 1
Reputation: 887
Compound class names aren't handled by CLASSNAME selector but you can get it by css selector or xpath. CSS_SELECTOR is more efficient than XPATH
element_present = expected_conditions.presence_of_element_located(
(By.CSS_SELECTOR, "table[class='heavy-table ncpulse-fav-table ncpulse-sortable compressed-table']"))
#or by xpath
element_present = expected_conditions.presence_of_element_located(
(By.XPATH, "//table[@class='heavy-table ncpulse-fav-table ncpulse-sortable compressed-table']"))
Upvotes: 2