Reputation: 779
I have a CSV file that contains information about journeys taken by car.
I want to wrangle this data so that I have a single list for each journey (every row). That list should contain the journey_code as the first item in the list and then all the subsequent MGRS units as separate items. Lastly, I would want to have all those journey lists grouped into a parent list.
If I was doing this manually, it would look like this:
journeyCodeA = ['journeyCodeA', 'mgrs1', 'mgrs2', 'mgrs3']
journeyCodeB = ['journeyCodeB', 'mgrs2', 'mgrs4', 'mgrs7']
combinedList = [journeyCodeA, journeyCodeB]
Here is what I have so far to create a list per row and to combine the desired columns.
comparison_journey_mgrs = pd.read_csv(r"journey-mgrs.csv", delimiter = ',')
comparison_journey_mgrs['mgrs_grids'] = comparison_journey_mgrs['mgrs_grids'].str.replace(" ","")
comparison_journey_list = []
for index, rows in comparison_route_mgrs.iterrows():
holding_list = [rows.journey_code, rows.mgrs_grids]
comparison_journey_list.append(holding_list)
The problem with this is that it is treating the mgrs_grids column as a single string.
My list looks like this:
[['7211863-140','18TWL927129,18TWL888113,18TWL888113,...,18TWL903128']]
But I want it to looks like this:
[['7211863-140','18TWL927129', '18TWL888113', '18TWL888113',..., '18TWL903128']]
I am struggling to find a way to iterate over each row of the dataframe, reference the mgrs_grids column and then convert the comma-separated string to a list in-place.
Thanks for any help!
{'driver_code': {0: 7211863, 1: 7211863, 2: 7211863, 3: 7211863},
'journey_code': {0: '7211863-140',
1: '7211863-105',
2: '7211863-50',
3: '7211863-109'},
'mgrs_grids': {0: '18TWL927129,18TWL888113,18TWL888113,18TWL887113,18TWL888113,18TWL887113,18TWL887113,18TWL887113,18TWL903128',
1: '18TWL927129,18TWL939112,18TWL939112,18TWL939113,18TWL939113,18TWL939113,18TWL939113,18TWL939113,18TWL939113,18TWL960111,18TWL960112',
2: '18TWL927129,18TWL889085,18TWL889085,18TWL888085,18TWL888085,18TWL888085,18TWL888085,18TWL888085,18TWL890085',
3: '18TWL927129,18TWL952106,18TWL952106,18TWL952106,18TWL952106,18TWL952106,18TWL952106,18TWL952106,18TWL952105,18TWL951103'}}
Upvotes: 2
Views: 14167
Reputation: 62393
pandas.Series.str.split
to split the string into a list
.# use str split on the column
df.mgrs_grids = df.mgrs_grids.str.split(',')
# display(df)
driver_code journey_code mgrs_grids
0 7211863 7211863-140 [18TWL927129, 18TWL888113, 18TWL888113, 18TWL887113, 18TWL888113, 18TWL887113, 18TWL887113, 18TWL887113, 18TWL903128]
1 7211863 7211863-105 [18TWL927129, 18TWL939112, 18TWL939112, 18TWL939113, 18TWL939113, 18TWL939113, 18TWL939113, 18TWL939113, 18TWL939113, 18TWL960111, 18TWL960112]
2 7211863 7211863-50 [18TWL927129, 18TWL889085, 18TWL889085, 18TWL888085, 18TWL888085, 18TWL888085, 18TWL888085, 18TWL888085, 18TWL890085]
3 7211863 7211863-109 [18TWL927129, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952105, 18TWL951103]
print(type(df.loc[0, 'mgrs_grids']))
[out]:
list
pandas.DataFrame.explode
to create separate rows for each value in the list.# get a separate row for each value
df = df.explode('mgrs_grids').reset_index(drop=True)
# display(df.hea())
driver_code journey_code mgrs_grids
0 7211863 7211863-140 18TWL927129
1 7211863 7211863-140 18TWL888113
2 7211863 7211863-140 18TWL888113
3 7211863 7211863-140 18TWL887113
4 7211863 7211863-140 18TWL888113
'journey_code'
to the front of 'mgrs_grids'
, and then splits the string into a list.
'mgrs_grids'
, but can also be assigned to a new column.# add the journey code to mgrs_grids and then split
df.mgrs_grids = (df.journey_code + ',' + df.mgrs_grids).str.split(',')
# display(df.head())
driver_code journey_code mgrs_grids
0 7211863 7211863-140 [7211863-140, 18TWL927129, 18TWL888113, 18TWL888113, 18TWL887113, 18TWL888113, 18TWL887113, 18TWL887113, 18TWL887113, 18TWL903128]
1 7211863 7211863-105 [7211863-105, 18TWL927129, 18TWL939112, 18TWL939112, 18TWL939113, 18TWL939113, 18TWL939113, 18TWL939113, 18TWL939113, 18TWL939113, 18TWL960111, 18TWL960112]
2 7211863 7211863-50 [7211863-50, 18TWL927129, 18TWL889085, 18TWL889085, 18TWL888085, 18TWL888085, 18TWL888085, 18TWL888085, 18TWL888085, 18TWL890085]
3 7211863 7211863-109 [7211863-109, 18TWL927129, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952106, 18TWL952105, 18TWL951103]
# output to nested list
df.mgrs_grids.tolist()
[out]:
[['7211863-140', '18TWL927129', '18TWL888113', '18TWL888113', '18TWL887113', '18TWL888113', '18TWL887113', '18TWL887113', '18TWL887113', '18TWL903128'],
['7211863-105', '18TWL927129', '18TWL939112', '18TWL939112', '18TWL939113', '18TWL939113', '18TWL939113', '18TWL939113', '18TWL939113', '18TWL939113', '18TWL960111', '18TWL960112'],
['7211863-50', '18TWL927129', '18TWL889085', '18TWL889085', '18TWL888085', '18TWL888085', '18TWL888085', '18TWL888085', '18TWL888085', '18TWL890085'],
['7211863-109', '18TWL927129', '18TWL952106', '18TWL952106', '18TWL952106', '18TWL952106', '18TWL952106', '18TWL952106', '18TWL952106', '18TWL952105', '18TWL951103']]
Upvotes: 15
Reputation: 23099
You could also split and explode your dataframe into a tabular format.
df1 = df.join(df['mgrs_grids'].str.split(',',expand=True).stack().reset_index(1),how='outer')\
.drop(['level_1','mgrs_grids'],1).rename(columns={0 : 'mgrs_grids'})
print(df1)
driver_code journey_code mgrs_grids
0 7211863 7211863-140 18TWL927129
0 7211863 7211863-140 18TWL888113
0 7211863 7211863-140 18TWL888113
0 7211863 7211863-140 18TWL887113
0 7211863 7211863-140 18TWL888113
0 7211863 7211863-140 18TWL887113
0 7211863 7211863-140 18TWL887113
0 7211863 7211863-140 18TWL887113
0 7211863 7211863-140 18TWL903128
1 7211863 7211863-105 18TWL927129
1 7211863 7211863-105 18TWL939112
1 7211863 7211863-105 18TWL939112
1 7211863 7211863-105 18TWL939113
1 7211863 7211863-105 18TWL939113
1 7211863 7211863-105 18TWL939113
1 7211863 7211863-105 18TWL939113
1 7211863 7211863-105 18TWL939113
1 7211863 7211863-105 18TWL939113
1 7211863 7211863-105 18TWL960111
1 7211863 7211863-105 18TWL960112
2 7211863 7211863-50 18TWL927129
2 7211863 7211863-50 18TWL889085
2 7211863 7211863-50 18TWL889085
2 7211863 7211863-50 18TWL888085
2 7211863 7211863-50 18TWL888085
2 7211863 7211863-50 18TWL888085
2 7211863 7211863-50 18TWL888085
2 7211863 7211863-50 18TWL888085
2 7211863 7211863-50 18TWL890085
3 7211863 7211863-109 18TWL927129
3 7211863 7211863-109 18TWL952106
3 7211863 7211863-109 18TWL952106
3 7211863 7211863-109 18TWL952106
3 7211863 7211863-109 18TWL952106
3 7211863 7211863-109 18TWL952106
3 7211863 7211863-109 18TWL952106
3 7211863 7211863-109 18TWL952106
3 7211863 7211863-109 18TWL952105
3 7211863 7211863-109 18TWL951103
Upvotes: 3